Proof of Theorem pcadd2
| Step | Hyp | Ref
| Expression |
| 1 | | pcadd2.1 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 2 | | pcadd2.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 3 | | pcxcl 16886 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈
ℝ*) |
| 4 | 1, 2, 3 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 pCnt 𝐴) ∈
ℝ*) |
| 5 | | pcadd2.3 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℚ) |
| 6 | | qaddcl 12986 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) |
| 7 | 2, 5, 6 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℚ) |
| 8 | | pcxcl 16886 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈
ℝ*) |
| 9 | 1, 7, 8 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈
ℝ*) |
| 10 | | pcxcl 16886 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈
ℝ*) |
| 11 | 1, 5, 10 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑃 pCnt 𝐵) ∈
ℝ*) |
| 12 | | pcadd2.4 |
. . . 4
⊢ (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵)) |
| 13 | 4, 11, 12 | xrltled 13171 |
. . 3
⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
| 14 | 1, 2, 5, 13 | pcadd 16914 |
. 2
⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
| 15 | | qnegcl 12987 |
. . . . 5
⊢ (𝐵 ∈ ℚ → -𝐵 ∈
ℚ) |
| 16 | 5, 15 | syl 17 |
. . . 4
⊢ (𝜑 → -𝐵 ∈ ℚ) |
| 17 | | xrltnle 11307 |
. . . . . . . . . 10
⊢ (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) |
| 18 | 4, 11, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) |
| 19 | 12, 18 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) |
| 20 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ) |
| 21 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ) |
| 22 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ) |
| 23 | | pcneg 16899 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵)) |
| 24 | 1, 5, 23 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵)) |
| 25 | 24 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
| 26 | 25 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
| 27 | 20, 21, 22, 26 | pcadd 16914 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))) |
| 28 | 27 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))) |
| 29 | | qcn 12984 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
| 30 | 5, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 31 | 30 | negcld 11586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -𝐵 ∈ ℂ) |
| 32 | | qcn 12984 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
| 33 | 2, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 34 | 31, 33, 30 | add12d 11467 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵))) |
| 35 | 31, 30 | addcomd 11442 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵)) |
| 36 | 30 | negidd 11589 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 + -𝐵) = 0) |
| 37 | 35, 36 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (-𝐵 + 𝐵) = 0) |
| 38 | 37 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0)) |
| 39 | 33 | addridd 11440 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| 40 | 34, 38, 39 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴) |
| 41 | 40 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴)) |
| 42 | 24, 41 | breq12d 5137 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) |
| 43 | 28, 42 | sylibd 239 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) |
| 44 | 19, 43 | mtod 198 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
| 45 | | xrltnle 11307 |
. . . . . . . 8
⊢ (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
| 46 | 9, 11, 45 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
| 47 | 44, 46 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵)) |
| 48 | 9, 11, 47 | xrltled 13171 |
. . . . 5
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵)) |
| 49 | 48, 24 | breqtrrd 5152 |
. . . 4
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵)) |
| 50 | 1, 7, 16, 49 | pcadd 16914 |
. . 3
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵))) |
| 51 | 33, 30, 31 | addassd 11262 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵))) |
| 52 | 36 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0)) |
| 53 | 51, 52, 39 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴) |
| 54 | 53 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴)) |
| 55 | 50, 54 | breqtrd 5150 |
. 2
⊢ (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴)) |
| 56 | 4, 9, 14, 55 | xrletrid 13176 |
1
⊢ (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵))) |