MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd2 Structured version   Visualization version   GIF version

Theorem pcadd2 16443
Description: The inequality of pcadd 16442 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1 (𝜑𝑃 ∈ ℙ)
pcadd2.2 (𝜑𝐴 ∈ ℚ)
pcadd2.3 (𝜑𝐵 ∈ ℚ)
pcadd2.4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd2 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcadd2.2 . . 3 (𝜑𝐴 ∈ ℚ)
3 pcxcl 16414 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
41, 2, 3syl2anc 587 . 2 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
5 pcadd2.3 . . . 4 (𝜑𝐵 ∈ ℚ)
6 qaddcl 12561 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
72, 5, 6syl2anc 587 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
8 pcxcl 16414 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
91, 7, 8syl2anc 587 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
10 pcxcl 16414 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
111, 5, 10syl2anc 587 . . . 4 (𝜑 → (𝑃 pCnt 𝐵) ∈ ℝ*)
12 pcadd2.4 . . . 4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
134, 11, 12xrltled 12740 . . 3 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
141, 2, 5, 13pcadd 16442 . 2 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
15 qnegcl 12562 . . . . 5 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
165, 15syl 17 . . . 4 (𝜑 → -𝐵 ∈ ℚ)
17 xrltnle 10900 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
184, 11, 17syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1912, 18mpbid 235 . . . . . . . 8 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
201adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ)
2116adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ)
227adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ)
23 pcneg 16427 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
241, 5, 23syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
2524breq1d 5063 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
2625biimpar 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
2720, 21, 22, 26pcadd 16442 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))
2827ex 416 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))))
29 qcn 12559 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
305, 29syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
3130negcld 11176 . . . . . . . . . . . . 13 (𝜑 → -𝐵 ∈ ℂ)
32 qcn 12559 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
332, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
3431, 33, 30add12d 11058 . . . . . . . . . . . 12 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵)))
3531, 30addcomd 11034 . . . . . . . . . . . . . 14 (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵))
3630negidd 11179 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + -𝐵) = 0)
3735, 36eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → (-𝐵 + 𝐵) = 0)
3837oveq2d 7229 . . . . . . . . . . . 12 (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0))
3933addid1d 11032 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 0) = 𝐴)
4034, 38, 393eqtrd 2781 . . . . . . . . . . 11 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴)
4140oveq2d 7229 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴))
4224, 41breq12d 5066 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
4328, 42sylibd 242 . . . . . . . 8 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
4419, 43mtod 201 . . . . . . 7 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
45 xrltnle 10900 . . . . . . . 8 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
469, 11, 45syl2anc 587 . . . . . . 7 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
4744, 46mpbird 260 . . . . . 6 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵))
489, 11, 47xrltled 12740 . . . . 5 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵))
4948, 24breqtrrd 5081 . . . 4 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵))
501, 7, 16, 49pcadd 16442 . . 3 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)))
5133, 30, 31addassd 10855 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵)))
5236oveq2d 7229 . . . . 5 (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0))
5351, 52, 393eqtrd 2781 . . . 4 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴)
5453oveq2d 7229 . . 3 (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴))
5550, 54breqtrd 5079 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))
564, 9, 14, 55xrletrid 12745 1 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  (class class class)co 7213  cc 10727  0cc0 10729   + caddc 10732  *cxr 10866   < clt 10867  cle 10868  -cneg 11063  cq 12544  cprime 16228   pCnt cpc 16389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390
This theorem is referenced by:  sylow1lem1  18987
  Copyright terms: Public domain W3C validator