ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds GIF version

Theorem 3dvds 12341
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁

Proof of Theorem 3dvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 3z 9443 . . 3 3 ∈ ℤ
21a1i 9 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∈ ℤ)
3 0zd 9426 . . . 4 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 0 ∈ ℤ)
4 nn0z 9434 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
54adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 𝑁 ∈ ℤ)
63, 5fzfigd 10620 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (0...𝑁) ∈ Fin)
7 ffvelcdm 5741 . . . . 5 ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
87adantll 476 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
9 10nn 9561 . . . . . 6 10 ∈ ℕ
109nnzi 9435 . . . . 5 10 ∈ ℤ
11 elfznn0 10278 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
1211adantl 277 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
13 zexpcl 10743 . . . . 5 ((10 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℤ)
1410, 12, 13sylancr 414 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℤ)
158, 14zmulcld 9543 . . 3 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
166, 15fsumzcl 11879 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
176, 8fsumzcl 11879 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ)
1815, 8zsubcld 9542 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) ∈ ℤ)
19 ax-1cn 8060 . . . . . . . . . . . 12 1 ∈ ℂ
209nncni 9088 . . . . . . . . . . . 12 10 ∈ ℂ
2119, 20negsubdi2i 8400 . . . . . . . . . . 11 -(1 − 10) = (10 − 1)
22 9p1e10 9548 . . . . . . . . . . . . 13 (9 + 1) = 10
2322eqcomi 2213 . . . . . . . . . . . 12 10 = (9 + 1)
2423oveq1i 5984 . . . . . . . . . . 11 (10 − 1) = ((9 + 1) − 1)
25 9cn 9166 . . . . . . . . . . . 12 9 ∈ ℂ
2625, 19pncan3oi 8330 . . . . . . . . . . 11 ((9 + 1) − 1) = 9
2721, 24, 263eqtri 2234 . . . . . . . . . 10 -(1 − 10) = 9
28 3t3e9 9236 . . . . . . . . . 10 (3 · 3) = 9
2927, 28eqtr4i 2233 . . . . . . . . 9 -(1 − 10) = (3 · 3)
3020a1i 9 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ∈ ℂ)
31 1re 8113 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
32 10re 9564 . . . . . . . . . . . . . . . . 17 10 ∈ ℝ
33 1lt10 9684 . . . . . . . . . . . . . . . . 17 1 < 10
3431, 32, 33gtapii 8749 . . . . . . . . . . . . . . . 16 10 # 1
3534a1i 9 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 # 1)
36 id 19 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
3730, 35, 36geoserap 11984 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) = ((1 − (10↑𝑘)) / (1 − 10)))
38 0zd 9426 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → 0 ∈ ℤ)
39 nn0z 9434 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
40 peano2zm 9452 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4139, 40syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 − 1) ∈ ℤ)
4238, 41fzfigd 10620 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (0...(𝑘 − 1)) ∈ Fin)
43 elfznn0 10278 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0)
4443adantl 277 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈ ℕ0)
45 zexpcl 10743 . . . . . . . . . . . . . . . 16 ((10 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → (10↑𝑗) ∈ ℤ)
4610, 44, 45sylancr 414 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → (10↑𝑗) ∈ ℤ)
4742, 46fsumzcl 11879 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) ∈ ℤ)
4837, 47eqeltrrd 2287 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ)
49 1z 9440 . . . . . . . . . . . . . . 15 1 ∈ ℤ
50 zsubcl 9455 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 10 ∈ ℤ) → (1 − 10) ∈ ℤ)
5149, 10, 50mp2an 426 . . . . . . . . . . . . . 14 (1 − 10) ∈ ℤ
5231, 33ltneii 8211 . . . . . . . . . . . . . . 15 1 ≠ 10
5319, 20subeq0i 8394 . . . . . . . . . . . . . . . 16 ((1 − 10) = 0 ↔ 1 = 10)
5453necon3bii 2418 . . . . . . . . . . . . . . 15 ((1 − 10) ≠ 0 ↔ 1 ≠ 10)
5552, 54mpbir 146 . . . . . . . . . . . . . 14 (1 − 10) ≠ 0
5610, 36, 13sylancr 414 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℤ)
57 zsubcl 9455 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ (10↑𝑘) ∈ ℤ) → (1 − (10↑𝑘)) ∈ ℤ)
5849, 56, 57sylancr 414 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 − (10↑𝑘)) ∈ ℤ)
59 dvdsval2 12267 . . . . . . . . . . . . . 14 (((1 − 10) ∈ ℤ ∧ (1 − 10) ≠ 0 ∧ (1 − (10↑𝑘)) ∈ ℤ) → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
6051, 55, 58, 59mp3an12i 1356 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
6148, 60mpbird 167 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (1 − 10) ∥ (1 − (10↑𝑘)))
6256zcnd 9538 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℂ)
63 negsubdi2 8373 . . . . . . . . . . . . 13 (((10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
6462, 19, 63sylancl 413 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
6561, 64breqtrrd 4090 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 − 10) ∥ -((10↑𝑘) − 1))
66 peano2zm 9452 . . . . . . . . . . . . 13 ((10↑𝑘) ∈ ℤ → ((10↑𝑘) − 1) ∈ ℤ)
6756, 66syl 14 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((10↑𝑘) − 1) ∈ ℤ)
68 dvdsnegb 12285 . . . . . . . . . . . 12 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6951, 67, 68sylancr 414 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
7065, 69mpbird 167 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (1 − 10) ∥ ((10↑𝑘) − 1))
71 negdvdsb 12284 . . . . . . . . . . 11 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
7251, 67, 71sylancr 414 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
7370, 72mpbid 147 . . . . . . . . 9 (𝑘 ∈ ℕ0 → -(1 − 10) ∥ ((10↑𝑘) − 1))
7429, 73eqbrtrrid 4098 . . . . . . . 8 (𝑘 ∈ ℕ0 → (3 · 3) ∥ ((10↑𝑘) − 1))
75 muldvds1 12293 . . . . . . . . 9 ((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
761, 1, 67, 75mp3an12i 1356 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
7774, 76mpd 13 . . . . . . 7 (𝑘 ∈ ℕ0 → 3 ∥ ((10↑𝑘) − 1))
7812, 77syl 14 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((10↑𝑘) − 1))
7914, 66syl 14 . . . . . . 7 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((10↑𝑘) − 1) ∈ ℤ)
80 dvdsmultr2 12310 . . . . . . 7 ((3 ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
811, 8, 79, 80mp3an2i 1357 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
8278, 81mpd 13 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1)))
838zcnd 9538 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
8414zcnd 9538 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℂ)
8583, 84muls1d 8532 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · ((10↑𝑘) − 1)) = (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8682, 85breqtrd 4088 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
876, 2, 18, 86fsumdvds 12319 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8815zcnd 9538 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℂ)
896, 88, 83fsumsub 11929 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
9087, 89breqtrd 4088 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
91 dvdssub2 12312 . 2 (((3 ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ) ∧ 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
922, 16, 17, 90, 91syl31anc 1255 1 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wne 2380   class class class wbr 4062  wf 5290  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  cmin 8285  -cneg 8286   # cap 8696   / cdiv 8787  3c3 9130  9c9 9136  0cn0 9337  cz 9414  cdc 9546  ...cfz 10172  cexp 10727  Σcsu 11830  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-dvds 12265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator