| Step | Hyp | Ref
| Expression |
| 1 | | 3z 9355 |
. . 3
⊢ 3 ∈
ℤ |
| 2 | 1 | a1i 9 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → 3
∈ ℤ) |
| 3 | | 0zd 9338 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → 0
∈ ℤ) |
| 4 | | nn0z 9346 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 5 | 4 | adantr 276 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → 𝑁 ∈
ℤ) |
| 6 | 3, 5 | fzfigd 10523 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) →
(0...𝑁) ∈
Fin) |
| 7 | | ffvelcdm 5695 |
. . . . 5
⊢ ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹‘𝑘) ∈ ℤ) |
| 8 | 7 | adantll 476 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹‘𝑘) ∈ ℤ) |
| 9 | | 10nn 9472 |
. . . . . 6
⊢ ;10 ∈ ℕ |
| 10 | 9 | nnzi 9347 |
. . . . 5
⊢ ;10 ∈ ℤ |
| 11 | | elfznn0 10189 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 12 | 11 | adantl 277 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 13 | | zexpcl 10646 |
. . . . 5
⊢ ((;10 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (;10↑𝑘) ∈
ℤ) |
| 14 | 10, 12, 13 | sylancr 414 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (;10↑𝑘) ∈ ℤ) |
| 15 | 8, 14 | zmulcld 9454 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹‘𝑘) · (;10↑𝑘)) ∈ ℤ) |
| 16 | 6, 15 | fsumzcl 11567 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) →
Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ∈ ℤ) |
| 17 | 6, 8 | fsumzcl 11567 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) →
Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) ∈ ℤ) |
| 18 | 15, 8 | zsubcld 9453 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹‘𝑘) · (;10↑𝑘)) − (𝐹‘𝑘)) ∈ ℤ) |
| 19 | | ax-1cn 7972 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 20 | 9 | nncni 9000 |
. . . . . . . . . . . 12
⊢ ;10 ∈ ℂ |
| 21 | 19, 20 | negsubdi2i 8312 |
. . . . . . . . . . 11
⊢ -(1
− ;10) = (;10 − 1) |
| 22 | | 9p1e10 9459 |
. . . . . . . . . . . . 13
⊢ (9 + 1) =
;10 |
| 23 | 22 | eqcomi 2200 |
. . . . . . . . . . . 12
⊢ ;10 = (9 + 1) |
| 24 | 23 | oveq1i 5932 |
. . . . . . . . . . 11
⊢ (;10 − 1) = ((9 + 1) −
1) |
| 25 | | 9cn 9078 |
. . . . . . . . . . . 12
⊢ 9 ∈
ℂ |
| 26 | 25, 19 | pncan3oi 8242 |
. . . . . . . . . . 11
⊢ ((9 + 1)
− 1) = 9 |
| 27 | 21, 24, 26 | 3eqtri 2221 |
. . . . . . . . . 10
⊢ -(1
− ;10) = 9 |
| 28 | | 3t3e9 9148 |
. . . . . . . . . 10
⊢ (3
· 3) = 9 |
| 29 | 27, 28 | eqtr4i 2220 |
. . . . . . . . 9
⊢ -(1
− ;10) = (3 ·
3) |
| 30 | 20 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ;10 ∈
ℂ) |
| 31 | | 1re 8025 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
| 32 | | 10re 9475 |
. . . . . . . . . . . . . . . . 17
⊢ ;10 ∈ ℝ |
| 33 | | 1lt10 9595 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
;10 |
| 34 | 31, 32, 33 | gtapii 8661 |
. . . . . . . . . . . . . . . 16
⊢ ;10 # 1 |
| 35 | 34 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ;10 # 1) |
| 36 | | id 19 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℕ0) |
| 37 | 30, 35, 36 | geoserap 11672 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ Σ𝑗 ∈
(0...(𝑘 − 1))(;10↑𝑗) = ((1 − (;10↑𝑘)) / (1 − ;10))) |
| 38 | | 0zd 9338 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
→ 0 ∈ ℤ) |
| 39 | | nn0z 9346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 40 | | peano2zm 9364 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
→ (𝑘 − 1) ∈
ℤ) |
| 42 | 38, 41 | fzfigd 10523 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ (0...(𝑘 − 1))
∈ Fin) |
| 43 | | elfznn0 10189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0) |
| 44 | 43 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈
ℕ0) |
| 45 | | zexpcl 10646 |
. . . . . . . . . . . . . . . 16
⊢ ((;10 ∈ ℤ ∧ 𝑗 ∈ ℕ0)
→ (;10↑𝑗) ∈
ℤ) |
| 46 | 10, 44, 45 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 ∈ (0...(𝑘 − 1))) → (;10↑𝑗) ∈ ℤ) |
| 47 | 42, 46 | fsumzcl 11567 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ Σ𝑗 ∈
(0...(𝑘 − 1))(;10↑𝑗) ∈ ℤ) |
| 48 | 37, 47 | eqeltrrd 2274 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ ((1 − (;10↑𝑘)) / (1 − ;10)) ∈ ℤ) |
| 49 | | 1z 9352 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℤ |
| 50 | | zsubcl 9367 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℤ ∧ ;10 ∈
ℤ) → (1 − ;10)
∈ ℤ) |
| 51 | 49, 10, 50 | mp2an 426 |
. . . . . . . . . . . . . 14
⊢ (1
− ;10) ∈
ℤ |
| 52 | 31, 33 | ltneii 8123 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
;10 |
| 53 | 19, 20 | subeq0i 8306 |
. . . . . . . . . . . . . . . 16
⊢ ((1
− ;10) = 0 ↔ 1 = ;10) |
| 54 | 53 | necon3bii 2405 |
. . . . . . . . . . . . . . 15
⊢ ((1
− ;10) ≠ 0 ↔ 1 ≠
;10) |
| 55 | 52, 54 | mpbir 146 |
. . . . . . . . . . . . . 14
⊢ (1
− ;10) ≠
0 |
| 56 | 10, 36, 13 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ (;10↑𝑘) ∈
ℤ) |
| 57 | | zsubcl 9367 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℤ ∧ (;10↑𝑘) ∈ ℤ) → (1 − (;10↑𝑘)) ∈ ℤ) |
| 58 | 49, 56, 57 | sylancr 414 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 − (;10↑𝑘)) ∈
ℤ) |
| 59 | | dvdsval2 11955 |
. . . . . . . . . . . . . 14
⊢ (((1
− ;10) ∈ ℤ ∧
(1 − ;10) ≠ 0 ∧ (1
− (;10↑𝑘)) ∈ ℤ) → ((1
− ;10) ∥ (1 −
(;10↑𝑘)) ↔ ((1 − (;10↑𝑘)) / (1 − ;10)) ∈ ℤ)) |
| 60 | 51, 55, 58, 59 | mp3an12i 1352 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ ((1 − ;10) ∥ (1
− (;10↑𝑘)) ↔ ((1 − (;10↑𝑘)) / (1 − ;10)) ∈ ℤ)) |
| 61 | 48, 60 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (1 − ;10) ∥ (1
− (;10↑𝑘))) |
| 62 | 56 | zcnd 9449 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (;10↑𝑘) ∈
ℂ) |
| 63 | | negsubdi2 8285 |
. . . . . . . . . . . . 13
⊢ (((;10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ)
→ -((;10↑𝑘) − 1) = (1 − (;10↑𝑘))) |
| 64 | 62, 19, 63 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ -((;10↑𝑘) − 1) = (1 − (;10↑𝑘))) |
| 65 | 61, 64 | breqtrrd 4061 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (1 − ;10) ∥
-((;10↑𝑘) − 1)) |
| 66 | | peano2zm 9364 |
. . . . . . . . . . . . 13
⊢ ((;10↑𝑘) ∈ ℤ → ((;10↑𝑘) − 1) ∈ ℤ) |
| 67 | 56, 66 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((;10↑𝑘) − 1) ∈
ℤ) |
| 68 | | dvdsnegb 11973 |
. . . . . . . . . . . 12
⊢ (((1
− ;10) ∈ ℤ ∧
((;10↑𝑘) − 1) ∈ ℤ) → ((1
− ;10) ∥ ((;10↑𝑘) − 1) ↔ (1 − ;10) ∥ -((;10↑𝑘) − 1))) |
| 69 | 51, 67, 68 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((1 − ;10) ∥
((;10↑𝑘) − 1) ↔ (1 − ;10) ∥ -((;10↑𝑘) − 1))) |
| 70 | 65, 69 | mpbird 167 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (1 − ;10) ∥
((;10↑𝑘) − 1)) |
| 71 | | negdvdsb 11972 |
. . . . . . . . . . 11
⊢ (((1
− ;10) ∈ ℤ ∧
((;10↑𝑘) − 1) ∈ ℤ) → ((1
− ;10) ∥ ((;10↑𝑘) − 1) ↔ -(1 − ;10) ∥ ((;10↑𝑘) − 1))) |
| 72 | 51, 67, 71 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((1 − ;10) ∥
((;10↑𝑘) − 1) ↔ -(1 − ;10) ∥ ((;10↑𝑘) − 1))) |
| 73 | 70, 72 | mpbid 147 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ -(1 − ;10) ∥
((;10↑𝑘) − 1)) |
| 74 | 29, 73 | eqbrtrrid 4069 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (3 · 3) ∥ ((;10↑𝑘) − 1)) |
| 75 | | muldvds1 11981 |
. . . . . . . . 9
⊢ ((3
∈ ℤ ∧ 3 ∈ ℤ ∧ ((;10↑𝑘) − 1) ∈ ℤ) → ((3
· 3) ∥ ((;10↑𝑘) − 1) → 3 ∥ ((;10↑𝑘) − 1))) |
| 76 | 1, 1, 67, 75 | mp3an12i 1352 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((3 · 3) ∥ ((;10↑𝑘) − 1) → 3 ∥ ((;10↑𝑘) − 1))) |
| 77 | 74, 76 | mpd 13 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 3 ∥ ((;10↑𝑘) − 1)) |
| 78 | 12, 77 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((;10↑𝑘) − 1)) |
| 79 | 14, 66 | syl 14 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((;10↑𝑘) − 1) ∈ ℤ) |
| 80 | | dvdsmultr2 11998 |
. . . . . . 7
⊢ ((3
∈ ℤ ∧ (𝐹‘𝑘) ∈ ℤ ∧ ((;10↑𝑘) − 1) ∈ ℤ) → (3
∥ ((;10↑𝑘) − 1) → 3 ∥
((𝐹‘𝑘) · ((;10↑𝑘) − 1)))) |
| 81 | 1, 8, 79, 80 | mp3an2i 1353 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((;10↑𝑘) − 1) → 3 ∥ ((𝐹‘𝑘) · ((;10↑𝑘) − 1)))) |
| 82 | 78, 81 | mpd 13 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹‘𝑘) · ((;10↑𝑘) − 1))) |
| 83 | 8 | zcnd 9449 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
| 84 | 14 | zcnd 9449 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (;10↑𝑘) ∈ ℂ) |
| 85 | 83, 84 | muls1d 8444 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹‘𝑘) · ((;10↑𝑘) − 1)) = (((𝐹‘𝑘) · (;10↑𝑘)) − (𝐹‘𝑘))) |
| 86 | 82, 85 | breqtrd 4059 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹‘𝑘) · (;10↑𝑘)) − (𝐹‘𝑘))) |
| 87 | 6, 2, 18, 86 | fsumdvds 12007 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → 3
∥ Σ𝑘 ∈
(0...𝑁)(((𝐹‘𝑘) · (;10↑𝑘)) − (𝐹‘𝑘))) |
| 88 | 15 | zcnd 9449 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹‘𝑘) · (;10↑𝑘)) ∈ ℂ) |
| 89 | 6, 88, 83 | fsumsub 11617 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) →
Σ𝑘 ∈ (0...𝑁)(((𝐹‘𝑘) · (;10↑𝑘)) − (𝐹‘𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) |
| 90 | 87, 89 | breqtrd 4059 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → 3
∥ (Σ𝑘 ∈
(0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) |
| 91 | | dvdssub2 12000 |
. 2
⊢ (((3
∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) ∈ ℤ) ∧ 3 ∥
(Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) |
| 92 | 2, 16, 17, 90, 91 | syl31anc 1252 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(0...𝑁)⟶ℤ) → (3
∥ Σ𝑘 ∈
(0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) |