![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zlmbasg | GIF version |
Description: Base set of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
zlmbasg | ⊢ (𝐺 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | zlmbas.w | . . 3 ⊢ 𝑊 = (ℤMod‘𝐺) | |
3 | baseid 12565 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | basendxnn 12567 | . . 3 ⊢ (Base‘ndx) ∈ ℕ | |
5 | scandxnbasendx 12662 | . . . 4 ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | |
6 | 5 | necomi 2445 | . . 3 ⊢ (Base‘ndx) ≠ (Scalar‘ndx) |
7 | vscandxnbasendx 12667 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | |
8 | 7 | necomi 2445 | . . 3 ⊢ (Base‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 2, 3, 4, 6, 8 | zlmlemg 13921 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝑊)) |
10 | 1, 9 | eqtrid 2234 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 ndxcnx 12508 Basecbs 12511 Scalarcsca 12589 ·𝑠 cvsca 12590 ℤModczlm 13907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-mulrcl 7939 ax-addcom 7940 ax-mulcom 7941 ax-addass 7942 ax-mulass 7943 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-1rid 7947 ax-0id 7948 ax-rnegex 7949 ax-precex 7950 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-ltwlin 7953 ax-pre-lttrn 7954 ax-pre-apti 7955 ax-pre-ltadd 7956 ax-pre-mulgt0 7957 ax-addf 7962 ax-mulf 7963 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-recs 6329 df-frec 6415 df-pnf 8023 df-mnf 8024 df-xr 8025 df-ltxr 8026 df-le 8027 df-sub 8159 df-neg 8160 df-reap 8561 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-9 9014 df-n0 9206 df-z 9283 df-dec 9414 df-uz 9558 df-fz 10038 df-seqfrec 10476 df-cj 10882 df-struct 12513 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 df-plusg 12599 df-mulr 12600 df-starv 12601 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-minusg 12946 df-mulg 13059 df-subg 13106 df-cmn 13222 df-mgp 13272 df-ur 13311 df-ring 13349 df-cring 13350 df-subrg 13563 df-icnfld 13862 df-zring 13887 df-zlm 13910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |