|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3pthd | Structured version Visualization version GIF version | ||
| Description: A path of length 3 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | 
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | 
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | 
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | 
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | 
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| 3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | 
| Ref | Expression | 
|---|---|
| 3pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | s4cli 14922 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 3 | 1, 2 | eqeltri 2836 | . . 3 ⊢ 𝑃 ∈ Word V | 
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) | 
| 5 | 3wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 6 | 5 | fveq2i 6908 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾𝐿”〉) | 
| 7 | s3len 14934 | . . . 4 ⊢ (♯‘〈“𝐽𝐾𝐿”〉) = 3 | |
| 8 | 6, 7 | eqtri 2764 | . . 3 ⊢ (♯‘𝐹) = 3 | 
| 9 | 4m1e3 12396 | . . 3 ⊢ (4 − 1) = 3 | |
| 10 | 1 | fveq2i 6908 | . . . . 5 ⊢ (♯‘𝑃) = (♯‘〈“𝐴𝐵𝐶𝐷”〉) | 
| 11 | s4len 14939 | . . . . 5 ⊢ (♯‘〈“𝐴𝐵𝐶𝐷”〉) = 4 | |
| 12 | 10, 11 | eqtr2i 2765 | . . . 4 ⊢ 4 = (♯‘𝑃) | 
| 13 | 12 | oveq1i 7442 | . . 3 ⊢ (4 − 1) = ((♯‘𝑃) − 1) | 
| 14 | 8, 9, 13 | 3eqtr2i 2770 | . 2 ⊢ (♯‘𝐹) = ((♯‘𝑃) − 1) | 
| 15 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 16 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 17 | 1, 5, 15, 16 | 3pthdlem1 30184 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) | 
| 18 | eqid 2736 | . 2 ⊢ (♯‘𝐹) = (♯‘𝐹) | |
| 19 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 20 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 21 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 22 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
| 23 | 1, 5, 15, 16, 19, 20, 21, 22 | 3trld 30192 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | 
| 24 | 4, 14, 17, 18, 23 | pthd 29790 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ⊆ wss 3950 {cpr 4627 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 1c1 11157 − cmin 11493 3c3 12323 4c4 12324 ♯chash 14370 Word cword 14553 〈“cs3 14882 〈“cs4 14883 Vtxcvtx 29014 iEdgciedg 29015 Pathscpths 29731 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 df-s3 14889 df-s4 14890 df-wlks 29618 df-trls 29711 df-pths 29735 | 
| This theorem is referenced by: 3pthond 30195 3cycld 30198 | 
| Copyright terms: Public domain | W3C validator |