![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pthd | Structured version Visualization version GIF version |
Description: A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
2trld.n | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | s3cli 14838 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
3 | 1, 2 | eqeltri 2823 | . . 3 ⊢ 𝑃 ∈ Word V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) |
5 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
6 | 5 | fveq2i 6888 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
7 | s2len 14846 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
8 | 6, 7 | eqtri 2754 | . . 3 ⊢ (♯‘𝐹) = 2 |
9 | 3m1e2 12344 | . . 3 ⊢ (3 − 1) = 2 | |
10 | 1 | fveq2i 6888 | . . . . 5 ⊢ (♯‘𝑃) = (♯‘〈“𝐴𝐵𝐶”〉) |
11 | s3len 14851 | . . . . 5 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
12 | 10, 11 | eqtr2i 2755 | . . . 4 ⊢ 3 = (♯‘𝑃) |
13 | 12 | oveq1i 7415 | . . 3 ⊢ (3 − 1) = ((♯‘𝑃) − 1) |
14 | 8, 9, 13 | 3eqtr2i 2760 | . 2 ⊢ (♯‘𝐹) = ((♯‘𝑃) − 1) |
15 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
16 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
17 | 1, 5, 15, 16 | 2pthdlem1 29693 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) |
18 | eqid 2726 | . 2 ⊢ (♯‘𝐹) = (♯‘𝐹) | |
19 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
20 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
21 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
22 | 2trld.n | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
23 | 1, 5, 15, 16, 19, 20, 21, 22 | 2trld 29701 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
24 | 4, 14, 17, 18, 23 | pthd 29535 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⊆ wss 3943 {cpr 4625 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 1c1 11113 − cmin 11448 2c2 12271 3c3 12272 ♯chash 14295 Word cword 14470 〈“cs2 14798 〈“cs3 14799 Vtxcvtx 28764 iEdgciedg 28765 Pathscpths 29478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-s2 14805 df-s3 14806 df-wlks 29365 df-trls 29458 df-pths 29482 |
This theorem is referenced by: 2cycld 34657 |
Copyright terms: Public domain | W3C validator |