| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2pthd | Structured version Visualization version GIF version | ||
| Description: A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| 2trld.n | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| Ref | Expression |
|---|---|
| 2pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | s3cli 14783 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
| 3 | 1, 2 | eqeltri 2827 | . . 3 ⊢ 𝑃 ∈ Word V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) |
| 5 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 6 | 5 | fveq2i 6820 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 7 | s2len 14791 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 8 | 6, 7 | eqtri 2754 | . . 3 ⊢ (♯‘𝐹) = 2 |
| 9 | 3m1e2 12243 | . . 3 ⊢ (3 − 1) = 2 | |
| 10 | 1 | fveq2i 6820 | . . . . 5 ⊢ (♯‘𝑃) = (♯‘〈“𝐴𝐵𝐶”〉) |
| 11 | s3len 14796 | . . . . 5 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
| 12 | 10, 11 | eqtr2i 2755 | . . . 4 ⊢ 3 = (♯‘𝑃) |
| 13 | 12 | oveq1i 7351 | . . 3 ⊢ (3 − 1) = ((♯‘𝑃) − 1) |
| 14 | 8, 9, 13 | 3eqtr2i 2760 | . 2 ⊢ (♯‘𝐹) = ((♯‘𝑃) − 1) |
| 15 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 16 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 17 | 1, 5, 15, 16 | 2pthdlem1 29903 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) |
| 18 | eqid 2731 | . 2 ⊢ (♯‘𝐹) = (♯‘𝐹) | |
| 19 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 20 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 21 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 22 | 2trld.n | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 23 | 1, 5, 15, 16, 19, 20, 21, 22 | 2trld 29911 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 24 | 4, 14, 17, 18, 23 | pthd 29742 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 {cpr 4573 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 1c1 11002 − cmin 11339 2c2 12175 3c3 12176 ♯chash 14232 Word cword 14415 〈“cs2 14743 〈“cs3 14744 Vtxcvtx 28969 iEdgciedg 28970 Pathscpths 29683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-wlks 29573 df-trls 29664 df-pths 29687 |
| This theorem is referenced by: 2cycld 35174 |
| Copyright terms: Public domain | W3C validator |