MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthd Structured version   Visualization version   GIF version

Theorem 2pthd 29703
Description: A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2wlkd.v 𝑉 = (Vtx‘𝐺)
2wlkd.i 𝐼 = (iEdg‘𝐺)
2trld.n (𝜑𝐽𝐾)
Assertion
Ref Expression
2pthd (𝜑𝐹(Paths‘𝐺)𝑃)

Proof of Theorem 2pthd
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 s3cli 14838 . . . 4 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
31, 2eqeltri 2823 . . 3 𝑃 ∈ Word V
43a1i 11 . 2 (𝜑𝑃 ∈ Word V)
5 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
65fveq2i 6888 . . . 4 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
7 s2len 14846 . . . 4 (♯‘⟨“𝐽𝐾”⟩) = 2
86, 7eqtri 2754 . . 3 (♯‘𝐹) = 2
9 3m1e2 12344 . . 3 (3 − 1) = 2
101fveq2i 6888 . . . . 5 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
11 s3len 14851 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
1210, 11eqtr2i 2755 . . . 4 3 = (♯‘𝑃)
1312oveq1i 7415 . . 3 (3 − 1) = ((♯‘𝑃) − 1)
148, 9, 133eqtr2i 2760 . 2 (♯‘𝐹) = ((♯‘𝑃) − 1)
15 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
16 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
171, 5, 15, 162pthdlem1 29693 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
18 eqid 2726 . 2 (♯‘𝐹) = (♯‘𝐹)
19 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
20 2wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
21 2wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
22 2trld.n . . 3 (𝜑𝐽𝐾)
231, 5, 15, 16, 19, 20, 21, 222trld 29701 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
244, 14, 17, 18, 23pthd 29535 1 (𝜑𝐹(Paths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  Vcvv 3468  wss 3943  {cpr 4625   class class class wbr 5141  cfv 6537  (class class class)co 7405  1c1 11113  cmin 11448  2c2 12271  3c3 12272  chash 14295  Word cword 14470  ⟨“cs2 14798  ⟨“cs3 14799  Vtxcvtx 28764  iEdgciedg 28765  Pathscpths 29478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552  df-s2 14805  df-s3 14806  df-wlks 29365  df-trls 29458  df-pths 29482
This theorem is referenced by:  2cycld  34657
  Copyright terms: Public domain W3C validator