Proof of Theorem 4sqlem10
Step | Hyp | Ref
| Expression |
1 | | 4sqlem5.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
3 | 2 | nnzd 12354 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ) |
4 | | zsqcl 13776 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝑀↑2) ∈
ℤ) |
5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∈ ℤ) |
6 | | 4sqlem5.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℤ) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℤ) |
8 | 2 | nnred 11918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℝ) |
9 | 8 | rehalfcld 12150 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 2) ∈ ℝ) |
10 | 9 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 2) ∈ ℂ) |
11 | 10 | negnegd 11253 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → --(𝑀 / 2) = (𝑀 / 2)) |
12 | | 4sqlem5.4 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
13 | 6, 1, 12 | 4sqlem5 16571 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
14 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
15 | 14 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ∈ ℤ) |
16 | 15 | zred 12355 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ∈ ℝ) |
17 | 6, 1, 12 | 4sqlem6 16572 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
18 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
19 | 18 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝐵 < (𝑀 / 2)) |
20 | 16, 19 | ltned 11041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ≠ (𝑀 / 2)) |
21 | 20 | neneqd 2947 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝐵 = (𝑀 / 2)) |
22 | | 2cnd 11981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 2 ∈ ℂ) |
23 | 22 | sqvald 13789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (2↑2) = (2 ·
2)) |
24 | 23 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
25 | 2 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℂ) |
26 | | 2ne0 12007 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
0 |
27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 2 ≠ 0) |
28 | 25, 22, 27 | sqdivd 13805 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
29 | 25 | sqcld 13790 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∈ ℂ) |
30 | 29, 22, 22, 27, 27 | divdiv1d 11712 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
31 | 24, 28, 30 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
32 | 29 | halfcld 12148 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → ((𝑀↑2) / 2) ∈
ℂ) |
33 | 32 | halfcld 12148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (((𝑀↑2) / 2) / 2) ∈
ℂ) |
34 | 15 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ∈ ℂ) |
35 | 34 | sqcld 13790 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) ∈ ℂ) |
36 | | 4sqlem10.5 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0) |
37 | 33, 35, 36 | subeq0d 11270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2)) |
38 | 31, 37 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2)) |
39 | | sqeqor 13860 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) →
((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))) |
40 | 34, 10, 39 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))) |
41 | 38, 40 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))) |
42 | 41 | ord 860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2))) |
43 | 21, 42 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝐵 = -(𝑀 / 2)) |
44 | 43, 15 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → -(𝑀 / 2) ∈ ℤ) |
45 | 44 | znegcld 12357 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → --(𝑀 / 2) ∈ ℤ) |
46 | 11, 45 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 2) ∈ ℤ) |
47 | 7, 46 | zaddcld 12359 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ) |
48 | | zsqcl 13776 |
. . . 4
⊢ ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈
ℤ) |
49 | 47, 48 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈
ℤ) |
50 | 47, 3 | zmulcld 12361 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ) |
51 | 47 | zred 12355 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ) |
52 | 2 | nnrpd 12699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈
ℝ+) |
53 | 51, 52 | modcld 13523 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
54 | 53 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
55 | | 0cnd 10899 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℂ) |
56 | | df-neg 11138 |
. . . . . . 7
⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) |
57 | 43, 12, 56 | 3eqtr3g 2802 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2))) |
58 | 54, 55, 10, 57 | subcan2d 11304 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0) |
59 | | dvdsval3 15895 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)) |
60 | 2, 47, 59 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)) |
61 | 58, 60 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2))) |
62 | | dvdssq 16200 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))) |
63 | 3, 47, 62 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))) |
64 | 61, 63 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)) |
65 | 25 | sqvald 13789 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) = (𝑀 · 𝑀)) |
66 | 2 | nnne0d 11953 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≠ 0) |
67 | | dvdsmulcr 15923 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2)))) |
68 | 3, 47, 3, 66, 67 | syl112anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2)))) |
69 | 61, 68 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀)) |
70 | 65, 69 | eqbrtrd 5092 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀)) |
71 | 5, 49, 50, 64, 70 | dvds2subd 15930 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀))) |
72 | 47 | zcnd 12356 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ) |
73 | 72 | sqvald 13789 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2)))) |
74 | 73 | oveq1d 7270 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀))) |
75 | 72, 72, 25 | subdid 11361 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀))) |
76 | 25 | 2halvesd 12149 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
77 | 76 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀)) |
78 | 7 | zcnd 12356 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℂ) |
79 | 78, 10, 10 | pnpcan2d 11300 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2))) |
80 | 77, 79 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2))) |
81 | 80 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2)))) |
82 | | subsq 13854 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) →
((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2)))) |
83 | 78, 10, 82 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2)))) |
84 | 31 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) |
85 | 81, 83, 84 | 3eqtr2d 2784 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) |
86 | 74, 75, 85 | 3eqtr2d 2784 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) |
87 | 71, 86 | breqtrd 5096 |
1
⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) |