MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   GIF version

Theorem 4sqlem10 16648
Description: Lemma for 4sq 16665. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 481 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
32nnzd 12425 . . . 4 ((𝜑𝜓) → 𝑀 ∈ ℤ)
4 zsqcl 13848 . . . 4 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
53, 4syl 17 . . 3 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
6 4sqlem5.2 . . . . . 6 (𝜑𝐴 ∈ ℤ)
76adantr 481 . . . . 5 ((𝜑𝜓) → 𝐴 ∈ ℤ)
82nnred 11988 . . . . . . . . 9 ((𝜑𝜓) → 𝑀 ∈ ℝ)
98rehalfcld 12220 . . . . . . . 8 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
109recnd 11003 . . . . . . 7 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
1110negnegd 11323 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . 15 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
136, 1, 124sqlem5 16643 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1413adantr 481 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1514simpld 495 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1615zred 12426 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 ∈ ℝ)
176, 1, 124sqlem6 16644 . . . . . . . . . . . . 13 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1817adantr 481 . . . . . . . . . . . 12 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1918simprd 496 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
2016, 19ltned 11111 . . . . . . . . . 10 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
2120neneqd 2948 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
22 2cnd 12051 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 2 ∈ ℂ)
2322sqvald 13861 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (2↑2) = (2 · 2))
2423oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
252nncnd 11989 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℂ)
26 2ne0 12077 . . . . . . . . . . . . . . 15 2 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 2 ≠ 0)
2825, 22, 27sqdivd 13877 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2925sqcld 13862 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
3029, 22, 22, 27, 27divdiv1d 11782 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
3124, 28, 303eqtr4d 2788 . . . . . . . . . . . 12 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
3229halfcld 12218 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3332halfcld 12218 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3415zcnd 12427 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3534sqcld 13862 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
36 4sqlem10.5 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3733, 35, 36subeq0d 11340 . . . . . . . . . . . 12 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3831, 37eqtr2d 2779 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
39 sqeqor 13932 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4034, 10, 39syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4138, 40mpbid 231 . . . . . . . . . 10 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
4241ord 861 . . . . . . . . 9 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4321, 42mpd 15 . . . . . . . 8 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
4443, 15eqeltrrd 2840 . . . . . . 7 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
4544znegcld 12428 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
4611, 45eqeltrrd 2840 . . . . 5 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
477, 46zaddcld 12430 . . . 4 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
48 zsqcl 13848 . . . 4 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
4947, 48syl 17 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
5047, 3zmulcld 12432 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
5147zred 12426 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ)
522nnrpd 12770 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℝ+)
5351, 52modcld 13595 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
5453recnd 11003 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
55 0cnd 10968 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
56 df-neg 11208 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
5743, 12, 563eqtr3g 2801 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
5854, 55, 10, 57subcan2d 11374 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
59 dvdsval3 15967 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
602, 47, 59syl2anc 584 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
6158, 60mpbird 256 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
62 dvdssq 16272 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
633, 47, 62syl2anc 584 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
6461, 63mpbid 231 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
6525sqvald 13861 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
662nnne0d 12023 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
67 dvdsmulcr 15995 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
683, 47, 3, 66, 67syl112anc 1373 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6961, 68mpbird 256 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
7065, 69eqbrtrd 5096 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
715, 49, 50, 64, 70dvds2subd 16002 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7247zcnd 12427 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
7372sqvald 13861 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
7473oveq1d 7290 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7572, 72, 25subdid 11431 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
76252halvesd 12219 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
7776oveq2d 7291 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
787zcnd 12427 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
7978, 10, 10pnpcan2d 11370 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
8077, 79eqtr3d 2780 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
8180oveq2d 7291 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
82 subsq 13926 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8378, 10, 82syl2anc 584 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8431oveq2d 7291 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8581, 83, 843eqtr2d 2784 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8674, 75, 853eqtr2d 2784 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8771, 86breqtrd 5100 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  cz 12319   mod cmo 13589  cexp 13782  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202
This theorem is referenced by:  4sqlem16  16661
  Copyright terms: Public domain W3C validator