MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   GIF version

Theorem 4sqlem10 16894
Description: Lemma for 4sq 16911. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
32nnzd 12532 . . . 4 ((𝜑𝜓) → 𝑀 ∈ ℤ)
4 zsqcl 14070 . . . 4 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
53, 4syl 17 . . 3 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
6 4sqlem5.2 . . . . . 6 (𝜑𝐴 ∈ ℤ)
76adantr 480 . . . . 5 ((𝜑𝜓) → 𝐴 ∈ ℤ)
82nnred 12177 . . . . . . . . 9 ((𝜑𝜓) → 𝑀 ∈ ℝ)
98rehalfcld 12405 . . . . . . . 8 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
109recnd 11178 . . . . . . 7 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
1110negnegd 11500 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . 15 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
136, 1, 124sqlem5 16889 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1413adantr 480 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1514simpld 494 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1615zred 12614 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 ∈ ℝ)
176, 1, 124sqlem6 16890 . . . . . . . . . . . . 13 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1817adantr 480 . . . . . . . . . . . 12 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1918simprd 495 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
2016, 19ltned 11286 . . . . . . . . . 10 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
2120neneqd 2930 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
22 2cnd 12240 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 2 ∈ ℂ)
2322sqvald 14084 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (2↑2) = (2 · 2))
2423oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
252nncnd 12178 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℂ)
26 2ne0 12266 . . . . . . . . . . . . . . 15 2 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 2 ≠ 0)
2825, 22, 27sqdivd 14100 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2925sqcld 14085 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
3029, 22, 22, 27, 27divdiv1d 11965 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
3124, 28, 303eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
3229halfcld 12403 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3332halfcld 12403 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3415zcnd 12615 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3534sqcld 14085 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
36 4sqlem10.5 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3733, 35, 36subeq0d 11517 . . . . . . . . . . . 12 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3831, 37eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
39 sqeqor 14157 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4034, 10, 39syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4138, 40mpbid 232 . . . . . . . . . 10 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
4241ord 864 . . . . . . . . 9 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4321, 42mpd 15 . . . . . . . 8 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
4443, 15eqeltrrd 2829 . . . . . . 7 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
4544znegcld 12616 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
4611, 45eqeltrrd 2829 . . . . 5 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
477, 46zaddcld 12618 . . . 4 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
48 zsqcl 14070 . . . 4 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
4947, 48syl 17 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
5047, 3zmulcld 12620 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
5147zred 12614 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ)
522nnrpd 12969 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℝ+)
5351, 52modcld 13813 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
5453recnd 11178 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
55 0cnd 11143 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
56 df-neg 11384 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
5743, 12, 563eqtr3g 2787 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
5854, 55, 10, 57subcan2d 11551 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
59 dvdsval3 16202 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
602, 47, 59syl2anc 584 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
6158, 60mpbird 257 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
62 dvdssq 16513 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
633, 47, 62syl2anc 584 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
6461, 63mpbid 232 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
6525sqvald 14084 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
662nnne0d 12212 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
67 dvdsmulcr 16231 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
683, 47, 3, 66, 67syl112anc 1376 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6961, 68mpbird 257 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
7065, 69eqbrtrd 5124 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
715, 49, 50, 64, 70dvds2subd 16239 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7247zcnd 12615 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
7372sqvald 14084 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
7473oveq1d 7384 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7572, 72, 25subdid 11610 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
76252halvesd 12404 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
7776oveq2d 7385 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
787zcnd 12615 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
7978, 10, 10pnpcan2d 11547 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
8077, 79eqtr3d 2766 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
8180oveq2d 7385 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
82 subsq 14151 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8378, 10, 82syl2anc 584 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8431oveq2d 7385 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8581, 83, 843eqtr2d 2770 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8674, 75, 853eqtr2d 2770 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8771, 86breqtrd 5128 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  cz 12505   mod cmo 13807  cexp 14002  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441
This theorem is referenced by:  4sqlem16  16907
  Copyright terms: Public domain W3C validator