MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   GIF version

Theorem 4sqlem10 16967
Description: Lemma for 4sq 16984. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
32nnzd 12615 . . . 4 ((𝜑𝜓) → 𝑀 ∈ ℤ)
4 zsqcl 14147 . . . 4 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
53, 4syl 17 . . 3 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
6 4sqlem5.2 . . . . . 6 (𝜑𝐴 ∈ ℤ)
76adantr 480 . . . . 5 ((𝜑𝜓) → 𝐴 ∈ ℤ)
82nnred 12255 . . . . . . . . 9 ((𝜑𝜓) → 𝑀 ∈ ℝ)
98rehalfcld 12488 . . . . . . . 8 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
109recnd 11263 . . . . . . 7 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
1110negnegd 11585 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . 15 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
136, 1, 124sqlem5 16962 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1413adantr 480 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1514simpld 494 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1615zred 12697 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 ∈ ℝ)
176, 1, 124sqlem6 16963 . . . . . . . . . . . . 13 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1817adantr 480 . . . . . . . . . . . 12 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1918simprd 495 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
2016, 19ltned 11371 . . . . . . . . . 10 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
2120neneqd 2937 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
22 2cnd 12318 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 2 ∈ ℂ)
2322sqvald 14161 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (2↑2) = (2 · 2))
2423oveq2d 7421 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
252nncnd 12256 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℂ)
26 2ne0 12344 . . . . . . . . . . . . . . 15 2 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 2 ≠ 0)
2825, 22, 27sqdivd 14177 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2925sqcld 14162 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
3029, 22, 22, 27, 27divdiv1d 12048 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
3124, 28, 303eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
3229halfcld 12486 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3332halfcld 12486 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3415zcnd 12698 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3534sqcld 14162 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
36 4sqlem10.5 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3733, 35, 36subeq0d 11602 . . . . . . . . . . . 12 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3831, 37eqtr2d 2771 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
39 sqeqor 14234 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4034, 10, 39syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4138, 40mpbid 232 . . . . . . . . . 10 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
4241ord 864 . . . . . . . . 9 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4321, 42mpd 15 . . . . . . . 8 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
4443, 15eqeltrrd 2835 . . . . . . 7 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
4544znegcld 12699 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
4611, 45eqeltrrd 2835 . . . . 5 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
477, 46zaddcld 12701 . . . 4 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
48 zsqcl 14147 . . . 4 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
4947, 48syl 17 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
5047, 3zmulcld 12703 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
5147zred 12697 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ)
522nnrpd 13049 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℝ+)
5351, 52modcld 13892 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
5453recnd 11263 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
55 0cnd 11228 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
56 df-neg 11469 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
5743, 12, 563eqtr3g 2793 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
5854, 55, 10, 57subcan2d 11636 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
59 dvdsval3 16276 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
602, 47, 59syl2anc 584 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
6158, 60mpbird 257 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
62 dvdssq 16586 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
633, 47, 62syl2anc 584 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
6461, 63mpbid 232 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
6525sqvald 14161 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
662nnne0d 12290 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
67 dvdsmulcr 16305 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
683, 47, 3, 66, 67syl112anc 1376 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6961, 68mpbird 257 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
7065, 69eqbrtrd 5141 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
715, 49, 50, 64, 70dvds2subd 16312 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7247zcnd 12698 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
7372sqvald 14161 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
7473oveq1d 7420 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7572, 72, 25subdid 11693 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
76252halvesd 12487 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
7776oveq2d 7421 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
787zcnd 12698 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
7978, 10, 10pnpcan2d 11632 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
8077, 79eqtr3d 2772 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
8180oveq2d 7421 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
82 subsq 14228 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8378, 10, 82syl2anc 584 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8431oveq2d 7421 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8581, 83, 843eqtr2d 2776 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8674, 75, 853eqtr2d 2776 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8771, 86breqtrd 5145 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  cz 12588   mod cmo 13886  cexp 14079  cdvds 16272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by:  4sqlem16  16980
  Copyright terms: Public domain W3C validator