MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absnegd Structured version   Visualization version   GIF version

Theorem absnegd 15402
Description: Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
absnegd (𝜑 → (abs‘-𝐴) = (abs‘𝐴))

Proof of Theorem absnegd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 absneg 15230 . 2 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
31, 2syl 17 1 (𝜑 → (abs‘-𝐴) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6537  cc 11110  -cneg 11449  abscabs 15187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-2 12279  df-cj 15052  df-re 15053  df-im 15054  df-abs 15189
This theorem is referenced by:  bddiblnc  25726  abelthlem8  26331  tanabsge  26396  abssinper  26410  cxpcn3  26638  abscxpbnd  26643  cosangneg2d  26694  chordthmlem  26719  atantayl  26824  lgamgulmlem2  26917  lgambdd  26924  lgsneg  27209  pntibndlem2  27479  irrdiff  36714  poimirlem29  37030  ftc1anclem8  37081  binomcxplemnotnn0  43688  neglimc  44932  stirlinglem5  45363  fourierdlem30  45422  fourierdlem39  45431  fourierdlem47  45438  fourierdlem73  45464  etransclem41  45560  hoicvr  45833
  Copyright terms: Public domain W3C validator