Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acongsym | Structured version Visualization version GIF version |
Description: Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
Ref | Expression |
---|---|
acongsym | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | congsym 40790 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵 − 𝐶))) → 𝐴 ∥ (𝐶 − 𝐵)) | |
2 | 1 | exp32 421 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 ∈ ℤ → (𝐴 ∥ (𝐵 − 𝐶) → 𝐴 ∥ (𝐶 − 𝐵)))) |
3 | 2 | 3impia 1116 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 − 𝐶) → 𝐴 ∥ (𝐶 − 𝐵))) |
4 | zcn 12324 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
5 | 4 | 3ad2ant2 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ) |
6 | 5 | negnegd 11323 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → --𝐵 = 𝐵) |
7 | 6 | oveq1d 7290 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (--𝐵 − -𝐶) = (𝐵 − -𝐶)) |
8 | 4 | negcld 11319 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℂ) |
9 | 8 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → -𝐵 ∈ ℂ) |
10 | zcn 12324 | . . . . . . . 8 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℂ) | |
11 | 10 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ) |
12 | 9, 11 | neg2subd 11349 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (--𝐵 − -𝐶) = (𝐶 − -𝐵)) |
13 | 7, 12 | eqtr3d 2780 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 − -𝐶) = (𝐶 − -𝐵)) |
14 | 13 | breq2d 5086 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 − -𝐶) ↔ 𝐴 ∥ (𝐶 − -𝐵))) |
15 | 14 | biimpd 228 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 − -𝐶) → 𝐴 ∥ (𝐶 − -𝐵))) |
16 | 3, 15 | orim12d 962 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵)))) |
17 | 16 | imp 407 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐴 ∥ (𝐶 − 𝐵) ∨ 𝐴 ∥ (𝐶 − -𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℂcc 10869 − cmin 11205 -cneg 11206 ℤcz 12319 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-dvds 15964 |
This theorem is referenced by: jm2.25lem1 40820 jm2.26 40824 |
Copyright terms: Public domain | W3C validator |