Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congsym Structured version   Visualization version   GIF version

Theorem congsym 38508
Description: Congruence mod 𝐴 is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
congsym (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐴 ∥ (𝐶𝐵))

Proof of Theorem congsym
StepHypRef Expression
1 simprr 763 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐴 ∥ (𝐵𝐶))
2 zcn 11738 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
32ad2antrl 718 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐶 ∈ ℂ)
4 zcn 11738 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
54ad2antlr 717 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐵 ∈ ℂ)
63, 5negsubdi2d 10752 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → -(𝐶𝐵) = (𝐵𝐶))
71, 6breqtrrd 4916 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐴 ∥ -(𝐶𝐵))
8 simpll 757 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐴 ∈ ℤ)
9 simprl 761 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐶 ∈ ℤ)
10 simplr 759 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐵 ∈ ℤ)
119, 10zsubcld 11844 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → (𝐶𝐵) ∈ ℤ)
12 dvdsnegb 15416 . . 3 ((𝐴 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ) → (𝐴 ∥ (𝐶𝐵) ↔ 𝐴 ∥ -(𝐶𝐵)))
138, 11, 12syl2anc 579 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → (𝐴 ∥ (𝐶𝐵) ↔ 𝐴 ∥ -(𝐶𝐵)))
147, 13mpbird 249 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ (𝐵𝐶))) → 𝐴 ∥ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107   class class class wbr 4888  (class class class)co 6924  cc 10272  cmin 10608  -cneg 10609  cz 11733  cdvds 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-z 11734  df-dvds 15397
This theorem is referenced by:  congneg  38509  congrep  38513  acongsym  38516  acongtr  38518  acongrep  38520  jm2.27a  38545
  Copyright terms: Public domain W3C validator