MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem1 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem1 29755
Description: Lemma for crctcshwlkn0 29766. (Contributed by AV, 13-Mar-2021.)
Assertion
Ref Expression
crctcshwlkn0lem1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((𝐴𝐵) + 1) ≤ 𝐴)

Proof of Theorem crctcshwlkn0lem1
StepHypRef Expression
1 recn 11099 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
3 nncn 12136 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
43adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
5 1cnd 11110 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℂ)
6 subsub 11394 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − (𝐵 − 1)) = ((𝐴𝐵) + 1))
76eqcomd 2735 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝐵) + 1) = (𝐴 − (𝐵 − 1)))
82, 4, 5, 7syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((𝐴𝐵) + 1) = (𝐴 − (𝐵 − 1)))
9 nnm1ge0 12544 . . . 4 (𝐵 ∈ ℕ → 0 ≤ (𝐵 − 1))
109adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐵 − 1))
11 nnre 12135 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
12 peano2rem 11431 . . . . 5 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
1311, 12syl 17 . . . 4 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℝ)
14 subge02 11636 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → (0 ≤ (𝐵 − 1) ↔ (𝐴 − (𝐵 − 1)) ≤ 𝐴))
1514bicomd 223 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → ((𝐴 − (𝐵 − 1)) ≤ 𝐴 ↔ 0 ≤ (𝐵 − 1)))
1613, 15sylan2 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 − 1)) ≤ 𝐴 ↔ 0 ≤ (𝐵 − 1)))
1710, 16mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 − 1)) ≤ 𝐴)
188, 17eqbrtrd 5114 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((𝐴𝐵) + 1) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  cmin 11347  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472
This theorem is referenced by:  crctcshwlkn0lem6  29760  crctcshwlkn0lem7  29761
  Copyright terms: Public domain W3C validator