![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshwlkn0lem2 | Structured version Visualization version GIF version |
Description: Lemma for crctcshwlkn0 29055. (Contributed by AV, 12-Mar-2021.) |
Ref | Expression |
---|---|
crctcshwlkn0lem.s | ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
crctcshwlkn0lem.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshwlkn0lem2 | ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcshwlkn0lem.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
2 | breq1 5150 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝐽 ≤ (𝑁 − 𝑆))) | |
3 | fvoveq1 7427 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆))) | |
4 | oveq1 7411 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆)) | |
5 | 4 | fvoveq1d 7426 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) |
6 | 2, 3, 5 | ifbieq12d 4555 | . . 3 ⊢ (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
7 | crctcshwlkn0lem.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) | |
8 | fzo0ss1 13658 | . . . . . 6 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
9 | 8 | sseli 3977 | . . . . 5 ⊢ (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁)) |
10 | elfzoel2 13627 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
11 | elfzonn0 13673 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0) | |
12 | eluzmn 12825 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) | |
13 | 10, 11, 12 | syl2anc 585 | . . . . . . 7 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) |
14 | fzss2 13537 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆)) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (0..^𝑁) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) |
16 | 15 | sseld 3980 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
17 | 7, 9, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
18 | 17 | imp 408 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ∈ (0...𝑁)) |
19 | fvex 6901 | . . . . 5 ⊢ (𝑃‘(𝐽 + 𝑆)) ∈ V | |
20 | fvex 6901 | . . . . 5 ⊢ (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V | |
21 | 19, 20 | ifex 4577 | . . . 4 ⊢ if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V) |
23 | 1, 6, 18, 22 | fvmptd3 7017 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
24 | elfzle2 13501 | . . . 4 ⊢ (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ≤ (𝑁 − 𝑆)) | |
25 | 24 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ≤ (𝑁 − 𝑆)) |
26 | 25 | iftrued 4535 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆))) |
27 | 23, 26 | eqtrd 2773 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3947 ifcif 4527 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7404 0cc0 11106 1c1 11107 + caddc 11109 ≤ cle 11245 − cmin 11440 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: crctcshwlkn0lem4 29047 crctcshwlkn0lem6 29049 |
Copyright terms: Public domain | W3C validator |