MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem2 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem2 29609
Description: Lemma for crctcshwlkn0 29619. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem2
StepHypRef Expression
1 crctcshwlkn0lem.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
2 breq1 5145 . . . 4 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
3 fvoveq1 7437 . . . 4 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
4 oveq1 7421 . . . . 5 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fvoveq1d 7436 . . . 4 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
62, 3, 5ifbieq12d 4552 . . 3 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
7 crctcshwlkn0lem.s . . . . 5 (𝜑𝑆 ∈ (1..^𝑁))
8 fzo0ss1 13686 . . . . . 6 (1..^𝑁) ⊆ (0..^𝑁)
98sseli 3974 . . . . 5 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁))
10 elfzoel2 13655 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
11 elfzonn0 13701 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
12 eluzmn 12851 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
1310, 11, 12syl2anc 583 . . . . . . 7 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
14 fzss2 13565 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑁𝑆)) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1513, 14syl 17 . . . . . 6 (𝑆 ∈ (0..^𝑁) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1615sseld 3977 . . . . 5 (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
177, 9, 163syl 18 . . . 4 (𝜑 → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
1817imp 406 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ∈ (0...𝑁))
19 fvex 6904 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
20 fvex 6904 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
2119, 20ifex 4574 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
2221a1i 11 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
231, 6, 18, 22fvmptd3 7022 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
24 elfzle2 13529 . . . 4 (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ≤ (𝑁𝑆))
2524adantl 481 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ≤ (𝑁𝑆))
2625iftrued 4532 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆)))
2723, 26eqtrd 2767 1 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  wss 3944  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  0cc0 11130  1c1 11131   + caddc 11133  cle 11271  cmin 11466  0cn0 12494  cz 12580  cuz 12844  ...cfz 13508  ..^cfzo 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652
This theorem is referenced by:  crctcshwlkn0lem4  29611  crctcshwlkn0lem6  29613
  Copyright terms: Public domain W3C validator