![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshwlkn0lem2 | Structured version Visualization version GIF version |
Description: Lemma for crctcshwlkn0 29619. (Contributed by AV, 12-Mar-2021.) |
Ref | Expression |
---|---|
crctcshwlkn0lem.s | ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
crctcshwlkn0lem.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshwlkn0lem2 | ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcshwlkn0lem.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
2 | breq1 5145 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝐽 ≤ (𝑁 − 𝑆))) | |
3 | fvoveq1 7437 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆))) | |
4 | oveq1 7421 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆)) | |
5 | 4 | fvoveq1d 7436 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) |
6 | 2, 3, 5 | ifbieq12d 4552 | . . 3 ⊢ (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
7 | crctcshwlkn0lem.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) | |
8 | fzo0ss1 13686 | . . . . . 6 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
9 | 8 | sseli 3974 | . . . . 5 ⊢ (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁)) |
10 | elfzoel2 13655 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
11 | elfzonn0 13701 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0) | |
12 | eluzmn 12851 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) | |
13 | 10, 11, 12 | syl2anc 583 | . . . . . . 7 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) |
14 | fzss2 13565 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆)) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (0..^𝑁) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) |
16 | 15 | sseld 3977 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
17 | 7, 9, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
18 | 17 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ∈ (0...𝑁)) |
19 | fvex 6904 | . . . . 5 ⊢ (𝑃‘(𝐽 + 𝑆)) ∈ V | |
20 | fvex 6904 | . . . . 5 ⊢ (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V | |
21 | 19, 20 | ifex 4574 | . . . 4 ⊢ if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V) |
23 | 1, 6, 18, 22 | fvmptd3 7022 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
24 | elfzle2 13529 | . . . 4 ⊢ (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ≤ (𝑁 − 𝑆)) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ≤ (𝑁 − 𝑆)) |
26 | 25 | iftrued 4532 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆))) |
27 | 23, 26 | eqtrd 2767 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 + caddc 11133 ≤ cle 11271 − cmin 11466 ℕ0cn0 12494 ℤcz 12580 ℤ≥cuz 12844 ...cfz 13508 ..^cfzo 13651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 |
This theorem is referenced by: crctcshwlkn0lem4 29611 crctcshwlkn0lem6 29613 |
Copyright terms: Public domain | W3C validator |