| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crctcshwlkn0lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for crctcshwlkn0 29784. (Contributed by AV, 12-Mar-2021.) |
| Ref | Expression |
|---|---|
| crctcshwlkn0lem.s | ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
| crctcshwlkn0lem.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
| Ref | Expression |
|---|---|
| crctcshwlkn0lem2 | ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
| 2 | breq1 5098 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝐽 ≤ (𝑁 − 𝑆))) | |
| 3 | fvoveq1 7376 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆))) | |
| 4 | oveq1 7360 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆)) | |
| 5 | 4 | fvoveq1d 7375 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) |
| 6 | 2, 3, 5 | ifbieq12d 4507 | . . 3 ⊢ (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
| 7 | crctcshwlkn0lem.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) | |
| 8 | fzo0ss1 13610 | . . . . . 6 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
| 9 | 8 | sseli 3933 | . . . . 5 ⊢ (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁)) |
| 10 | elfzoel2 13579 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
| 11 | elfzonn0 13628 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0) | |
| 12 | eluzmn 12760 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) |
| 14 | fzss2 13485 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆)) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (0..^𝑁) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) |
| 16 | 15 | sseld 3936 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
| 17 | 7, 9, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
| 18 | 17 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ∈ (0...𝑁)) |
| 19 | fvex 6839 | . . . . 5 ⊢ (𝑃‘(𝐽 + 𝑆)) ∈ V | |
| 20 | fvex 6839 | . . . . 5 ⊢ (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V | |
| 21 | 19, 20 | ifex 4529 | . . . 4 ⊢ if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V) |
| 23 | 1, 6, 18, 22 | fvmptd3 6957 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
| 24 | elfzle2 13449 | . . . 4 ⊢ (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ≤ (𝑁 − 𝑆)) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ≤ (𝑁 − 𝑆)) |
| 26 | 25 | iftrued 4486 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆))) |
| 27 | 23, 26 | eqtrd 2764 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 ≤ cle 11169 − cmin 11365 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: crctcshwlkn0lem4 29776 crctcshwlkn0lem6 29778 |
| Copyright terms: Public domain | W3C validator |