Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crctcshwlkn0lem2 | Structured version Visualization version GIF version |
Description: Lemma for crctcshwlkn0 27772. (Contributed by AV, 12-Mar-2021.) |
Ref | Expression |
---|---|
crctcshwlkn0lem.s | ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
crctcshwlkn0lem.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshwlkn0lem2 | ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcshwlkn0lem.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
2 | breq1 5043 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝐽 ≤ (𝑁 − 𝑆))) | |
3 | fvoveq1 7206 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆))) | |
4 | oveq1 7190 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆)) | |
5 | 4 | fvoveq1d 7205 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) |
6 | 2, 3, 5 | ifbieq12d 4452 | . . 3 ⊢ (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
7 | crctcshwlkn0lem.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) | |
8 | fzo0ss1 13171 | . . . . . 6 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
9 | 8 | sseli 3883 | . . . . 5 ⊢ (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁)) |
10 | elfzoel2 13141 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
11 | elfzonn0 13186 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0) | |
12 | eluzmn 12344 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) | |
13 | 10, 11, 12 | syl2anc 587 | . . . . . . 7 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) |
14 | fzss2 13051 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆)) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (0..^𝑁) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) |
16 | 15 | sseld 3886 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
17 | 7, 9, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
18 | 17 | imp 410 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ∈ (0...𝑁)) |
19 | fvex 6700 | . . . . 5 ⊢ (𝑃‘(𝐽 + 𝑆)) ∈ V | |
20 | fvex 6700 | . . . . 5 ⊢ (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V | |
21 | 19, 20 | ifex 4474 | . . . 4 ⊢ if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V) |
23 | 1, 6, 18, 22 | fvmptd3 6811 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
24 | elfzle2 13015 | . . . 4 ⊢ (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ≤ (𝑁 − 𝑆)) | |
25 | 24 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ≤ (𝑁 − 𝑆)) |
26 | 25 | iftrued 4432 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆))) |
27 | 23, 26 | eqtrd 2774 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3400 ⊆ wss 3853 ifcif 4424 class class class wbr 5040 ↦ cmpt 5120 ‘cfv 6350 (class class class)co 7183 0cc0 10628 1c1 10629 + caddc 10631 ≤ cle 10767 − cmin 10961 ℕ0cn0 11989 ℤcz 12075 ℤ≥cuz 12337 ...cfz 12994 ..^cfzo 13137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-nn 11730 df-n0 11990 df-z 12076 df-uz 12338 df-fz 12995 df-fzo 13138 |
This theorem is referenced by: crctcshwlkn0lem4 27764 crctcshwlkn0lem6 27766 |
Copyright terms: Public domain | W3C validator |