![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshwlkn0lem2 | Structured version Visualization version GIF version |
Description: Lemma for crctcshwlkn0 29688. (Contributed by AV, 12-Mar-2021.) |
Ref | Expression |
---|---|
crctcshwlkn0lem.s | ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
crctcshwlkn0lem.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshwlkn0lem2 | ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcshwlkn0lem.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
2 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑥 ≤ (𝑁 − 𝑆) ↔ 𝐽 ≤ (𝑁 − 𝑆))) | |
3 | fvoveq1 7440 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆))) | |
4 | oveq1 7424 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆)) | |
5 | 4 | fvoveq1d 7439 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) |
6 | 2, 3, 5 | ifbieq12d 4557 | . . 3 ⊢ (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
7 | crctcshwlkn0lem.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) | |
8 | fzo0ss1 13694 | . . . . . 6 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
9 | 8 | sseli 3973 | . . . . 5 ⊢ (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁)) |
10 | elfzoel2 13663 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
11 | elfzonn0 13709 | . . . . . . . 8 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0) | |
12 | eluzmn 12859 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) | |
13 | 10, 11, 12 | syl2anc 582 | . . . . . . 7 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆))) |
14 | fzss2 13573 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑆)) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (0..^𝑁) → (0...(𝑁 − 𝑆)) ⊆ (0...𝑁)) |
16 | 15 | sseld 3976 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
17 | 7, 9, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ∈ (0...𝑁))) |
18 | 17 | imp 405 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ∈ (0...𝑁)) |
19 | fvex 6907 | . . . . 5 ⊢ (𝑃‘(𝐽 + 𝑆)) ∈ V | |
20 | fvex 6907 | . . . . 5 ⊢ (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V | |
21 | 19, 20 | ifex 4579 | . . . 4 ⊢ if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V) |
23 | 1, 6, 18, 22 | fvmptd3 7025 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁)))) |
24 | elfzle2 13537 | . . . 4 ⊢ (𝐽 ∈ (0...(𝑁 − 𝑆)) → 𝐽 ≤ (𝑁 − 𝑆)) | |
25 | 24 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → 𝐽 ≤ (𝑁 − 𝑆)) |
26 | 25 | iftrued 4537 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → if(𝐽 ≤ (𝑁 − 𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆))) |
27 | 23, 26 | eqtrd 2765 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3945 ifcif 4529 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 + caddc 11141 ≤ cle 11279 − cmin 11474 ℕ0cn0 12502 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13516 ..^cfzo 13659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 |
This theorem is referenced by: crctcshwlkn0lem4 29680 crctcshwlkn0lem6 29682 |
Copyright terms: Public domain | W3C validator |