Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnm1ge0 | Structured version Visualization version GIF version |
Description: A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
nnm1ge0 | ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nngt0 12058 | . 2 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
2 | 0z 12384 | . . 3 ⊢ 0 ∈ ℤ | |
3 | nnz 12396 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
4 | zltlem1 12427 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ 0 ≤ (𝑁 − 1))) | |
5 | 2, 3, 4 | sylancr 588 | . 2 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 ↔ 0 ≤ (𝑁 − 1))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 0cc0 10925 1c1 10926 < clt 11063 ≤ cle 11064 − cmin 11259 ℕcn 12027 ℤcz 12373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10982 ax-1cn 10983 ax-icn 10984 ax-addcl 10985 ax-addrcl 10986 ax-mulcl 10987 ax-mulrcl 10988 ax-mulcom 10989 ax-addass 10990 ax-mulass 10991 ax-distr 10992 ax-i2m1 10993 ax-1ne0 10994 ax-1rid 10995 ax-rnegex 10996 ax-rrecex 10997 ax-cnre 10998 ax-pre-lttri 10999 ax-pre-lttrn 11000 ax-pre-ltadd 11001 ax-pre-mulgt0 11002 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3340 df-rab 3341 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11065 df-mnf 11066 df-xr 11067 df-ltxr 11068 df-le 11069 df-sub 11261 df-neg 11262 df-nn 12028 df-n0 12288 df-z 12374 |
This theorem is referenced by: ubmelm1fzo 13537 m1modnnsub1 13691 cshwidxm1 14573 crctcshwlkn0lem1 28232 wallispilem3 43846 nn0oALTV 45401 m1modmmod 46120 |
Copyright terms: Public domain | W3C validator |