Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringassd | Structured version Visualization version GIF version |
Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
ringassd.b | ⊢ 𝐵 = (Base‘𝑅) |
ringassd.t | ⊢ · = (.r‘𝑅) |
ringassd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringassd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringassd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringassd.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ringassd | ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringassd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringassd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringassd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ringassd.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | ringassd.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringassd.t | . . 3 ⊢ · = (.r‘𝑅) | |
7 | 5, 6 | ringass 19438 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1373 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 .rcmulr 16671 Ringcrg 19418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-plusg 16683 df-sgrp 18019 df-mnd 18030 df-mgp 19361 df-ring 19420 |
This theorem is referenced by: drngmulcanad 39856 drngmulcan2ad 39857 drnginvmuld 39858 prjspner1 40062 |
Copyright terms: Public domain | W3C validator |