![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpnlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpn 16850. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 | ⊢ 𝐾 = ((!‘𝑁) + 1) |
Ref | Expression |
---|---|
infpnlem2 | ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpnlem.1 | . . . . 5 ⊢ 𝐾 = ((!‘𝑁) + 1) | |
2 | nnnn0 12484 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | faccld 14249 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
4 | 3 | peano2nnd 12234 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ) |
5 | 1, 4 | eqeltrid 2836 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐾 ∈ ℕ) |
6 | 3 | nnge1d 12265 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁)) |
7 | 1nn 12228 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
8 | nnleltp1 12622 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) | |
9 | 7, 3, 8 | sylancr 586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) |
10 | 6, 9 | mpbid 231 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1)) |
11 | 10, 1 | breqtrrdi 5191 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < 𝐾) |
12 | nncn 12225 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
13 | nnne0 12251 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
14 | 12, 13 | jca 511 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) |
15 | divid 11906 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) → (𝐾 / 𝐾) = 1) | |
16 | 5, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
17 | 16, 7 | eqeltrdi 2840 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
18 | breq2 5153 | . . . . . 6 ⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) | |
19 | oveq2 7420 | . . . . . . 7 ⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) | |
20 | 19 | eleq1d 2817 | . . . . . 6 ⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
21 | 18, 20 | anbi12d 630 | . . . . 5 ⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
22 | 21 | rspcev 3613 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
23 | 5, 11, 17, 22 | syl12anc 834 | . . 3 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
24 | breq2 5153 | . . . . 5 ⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) | |
25 | oveq2 7420 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) | |
26 | 25 | eleq1d 2817 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
27 | 24, 26 | anbi12d 630 | . . . 4 ⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
28 | 27 | nnwos 12904 | . . 3 ⊢ (∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
29 | 23, 28 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
30 | 1 | infpnlem1 16848 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
31 | 30 | reximdva 3167 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
32 | 29, 31 | mpd 15 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 class class class wbr 5149 ‘cfv 6544 (class class class)co 7412 ℂcc 11111 0cc0 11113 1c1 11114 + caddc 11116 < clt 11253 ≤ cle 11254 / cdiv 11876 ℕcn 12217 !cfa 14238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-fac 14239 |
This theorem is referenced by: infpn 16850 |
Copyright terms: Public domain | W3C validator |