Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infpnlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpn 16613. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 | ⊢ 𝐾 = ((!‘𝑁) + 1) |
Ref | Expression |
---|---|
infpnlem2 | ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpnlem.1 | . . . . 5 ⊢ 𝐾 = ((!‘𝑁) + 1) | |
2 | nnnn0 12240 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | faccld 13998 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
4 | 3 | peano2nnd 11990 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ) |
5 | 1, 4 | eqeltrid 2843 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐾 ∈ ℕ) |
6 | 3 | nnge1d 12021 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁)) |
7 | 1nn 11984 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
8 | nnleltp1 12375 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) | |
9 | 7, 3, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) |
10 | 6, 9 | mpbid 231 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1)) |
11 | 10, 1 | breqtrrdi 5116 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < 𝐾) |
12 | nncn 11981 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
13 | nnne0 12007 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
14 | 12, 13 | jca 512 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) |
15 | divid 11662 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) → (𝐾 / 𝐾) = 1) | |
16 | 5, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
17 | 16, 7 | eqeltrdi 2847 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
18 | breq2 5078 | . . . . . 6 ⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) | |
19 | oveq2 7283 | . . . . . . 7 ⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) | |
20 | 19 | eleq1d 2823 | . . . . . 6 ⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
21 | 18, 20 | anbi12d 631 | . . . . 5 ⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
22 | 21 | rspcev 3561 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
23 | 5, 11, 17, 22 | syl12anc 834 | . . 3 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
24 | breq2 5078 | . . . . 5 ⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) | |
25 | oveq2 7283 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) | |
26 | 25 | eleq1d 2823 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
27 | 24, 26 | anbi12d 631 | . . . 4 ⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
28 | 27 | nnwos 12655 | . . 3 ⊢ (∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
29 | 23, 28 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
30 | 1 | infpnlem1 16611 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
31 | 30 | reximdva 3203 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
32 | 29, 31 | mpd 15 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 / cdiv 11632 ℕcn 11973 !cfa 13987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-fac 13988 |
This theorem is referenced by: infpn 16613 |
Copyright terms: Public domain | W3C validator |