Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infpnlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpn 16690. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 | ⊢ 𝐾 = ((!‘𝑁) + 1) |
Ref | Expression |
---|---|
infpnlem2 | ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpnlem.1 | . . . . 5 ⊢ 𝐾 = ((!‘𝑁) + 1) | |
2 | nnnn0 12320 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | faccld 14078 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
4 | 3 | peano2nnd 12070 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ) |
5 | 1, 4 | eqeltrid 2842 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐾 ∈ ℕ) |
6 | 3 | nnge1d 12101 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁)) |
7 | 1nn 12064 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
8 | nnleltp1 12455 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) | |
9 | 7, 3, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) |
10 | 6, 9 | mpbid 231 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1)) |
11 | 10, 1 | breqtrrdi 5129 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < 𝐾) |
12 | nncn 12061 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
13 | nnne0 12087 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
14 | 12, 13 | jca 512 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) |
15 | divid 11742 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) → (𝐾 / 𝐾) = 1) | |
16 | 5, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
17 | 16, 7 | eqeltrdi 2846 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
18 | breq2 5091 | . . . . . 6 ⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) | |
19 | oveq2 7325 | . . . . . . 7 ⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) | |
20 | 19 | eleq1d 2822 | . . . . . 6 ⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
21 | 18, 20 | anbi12d 631 | . . . . 5 ⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
22 | 21 | rspcev 3570 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
23 | 5, 11, 17, 22 | syl12anc 834 | . . 3 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
24 | breq2 5091 | . . . . 5 ⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) | |
25 | oveq2 7325 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) | |
26 | 25 | eleq1d 2822 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
27 | 24, 26 | anbi12d 631 | . . . 4 ⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
28 | 27 | nnwos 12735 | . . 3 ⊢ (∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
29 | 23, 28 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
30 | 1 | infpnlem1 16688 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
31 | 30 | reximdva 3162 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
32 | 29, 31 | mpd 15 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 class class class wbr 5087 ‘cfv 6466 (class class class)co 7317 ℂcc 10949 0cc0 10951 1c1 10952 + caddc 10954 < clt 11089 ≤ cle 11090 / cdiv 11712 ℕcn 12053 !cfa 14067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-n0 12314 df-z 12400 df-uz 12663 df-seq 13802 df-fac 14068 |
This theorem is referenced by: infpn 16690 |
Copyright terms: Public domain | W3C validator |