MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmaddn0 Structured version   Visualization version   GIF version

Theorem dmgmaddn0 25286
Description: If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
dmgmaddn0 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0)

Proof of Theorem dmgmaddn0
StepHypRef Expression
1 eldmgm 25285 . . . 4 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
21simprbi 497 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ -𝐴 ∈ ℕ0)
32adantr 481 . 2 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ¬ -𝐴 ∈ ℕ0)
4 df-neg 10726 . . . . . 6 -𝐴 = (0 − 𝐴)
54eqeq1i 2802 . . . . 5 (-𝐴 = 𝑁 ↔ (0 − 𝐴) = 𝑁)
6 0cnd 10487 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℂ)
7 eldifi 4030 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ ℂ)
87adantr 481 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
9 nn0cn 11761 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantl 482 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
116, 8, 10subaddd 10869 . . . . 5 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((0 − 𝐴) = 𝑁 ↔ (𝐴 + 𝑁) = 0))
125, 11syl5bb 284 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 ↔ (𝐴 + 𝑁) = 0))
13 simpr 485 . . . . 5 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
14 eleq1 2872 . . . . 5 (-𝐴 = 𝑁 → (-𝐴 ∈ ℕ0𝑁 ∈ ℕ0))
1513, 14syl5ibrcom 248 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 → -𝐴 ∈ ℕ0))
1612, 15sylbird 261 . . 3 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝑁) = 0 → -𝐴 ∈ ℕ0))
1716necon3bd 3000 . 2 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (¬ -𝐴 ∈ ℕ0 → (𝐴 + 𝑁) ≠ 0))
183, 17mpd 15 1 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986  cdif 3862  (class class class)co 7023  cc 10388  0cc0 10390   + caddc 10393  cmin 10723  -cneg 10724  cn 11492  0cn0 11751  cz 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836
This theorem is referenced by:  dmgmn0  25289  dmgmdivn0  25291  lgamcvg2  25318
  Copyright terms: Public domain W3C validator