Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmgmaddn0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.) |
Ref | Expression |
---|---|
dmgmaddn0 | ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmgm 25721 | . . . 4 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
2 | 1 | simprbi 500 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ -𝐴 ∈ ℕ0) |
3 | 2 | adantr 484 | . 2 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ¬ -𝐴 ∈ ℕ0) |
4 | df-neg 10925 | . . . . . 6 ⊢ -𝐴 = (0 − 𝐴) | |
5 | 4 | eqeq1i 2764 | . . . . 5 ⊢ (-𝐴 = 𝑁 ↔ (0 − 𝐴) = 𝑁) |
6 | 0cnd 10686 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℂ) | |
7 | eldifi 4035 | . . . . . . 7 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ ℂ) | |
8 | 7 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) |
9 | nn0cn 11958 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
10 | 9 | adantl 485 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
11 | 6, 8, 10 | subaddd 11067 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((0 − 𝐴) = 𝑁 ↔ (𝐴 + 𝑁) = 0)) |
12 | 5, 11 | syl5bb 286 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 ↔ (𝐴 + 𝑁) = 0)) |
13 | simpr 488 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
14 | eleq1 2840 | . . . . 5 ⊢ (-𝐴 = 𝑁 → (-𝐴 ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
15 | 13, 14 | syl5ibrcom 250 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 → -𝐴 ∈ ℕ0)) |
16 | 12, 15 | sylbird 263 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝑁) = 0 → -𝐴 ∈ ℕ0)) |
17 | 16 | necon3bd 2966 | . 2 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (¬ -𝐴 ∈ ℕ0 → (𝐴 + 𝑁) ≠ 0)) |
18 | 3, 17 | mpd 15 | 1 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∖ cdif 3858 (class class class)co 7157 ℂcc 10587 0cc0 10589 + caddc 10592 − cmin 10922 -cneg 10923 ℕcn 11688 ℕ0cn0 11948 ℤcz 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-n0 11949 df-z 12035 |
This theorem is referenced by: dmgmn0 25725 dmgmdivn0 25727 lgamcvg2 25754 |
Copyright terms: Public domain | W3C validator |