MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmaddn0 Structured version   Visualization version   GIF version

Theorem dmgmaddn0 27081
Description: If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
dmgmaddn0 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0)

Proof of Theorem dmgmaddn0
StepHypRef Expression
1 eldmgm 27080 . . . 4 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
21simprbi 496 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ -𝐴 ∈ ℕ0)
32adantr 480 . 2 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ¬ -𝐴 ∈ ℕ0)
4 df-neg 11493 . . . . . 6 -𝐴 = (0 − 𝐴)
54eqeq1i 2740 . . . . 5 (-𝐴 = 𝑁 ↔ (0 − 𝐴) = 𝑁)
6 0cnd 11252 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℂ)
7 eldifi 4141 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ ℂ)
87adantr 480 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
9 nn0cn 12534 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantl 481 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
116, 8, 10subaddd 11636 . . . . 5 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((0 − 𝐴) = 𝑁 ↔ (𝐴 + 𝑁) = 0))
125, 11bitrid 283 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 ↔ (𝐴 + 𝑁) = 0))
13 simpr 484 . . . . 5 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
14 eleq1 2827 . . . . 5 (-𝐴 = 𝑁 → (-𝐴 ∈ ℕ0𝑁 ∈ ℕ0))
1513, 14syl5ibrcom 247 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (-𝐴 = 𝑁 → -𝐴 ∈ ℕ0))
1612, 15sylbird 260 . . 3 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝑁) = 0 → -𝐴 ∈ ℕ0))
1716necon3bd 2952 . 2 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (¬ -𝐴 ∈ ℕ0 → (𝐴 + 𝑁) ≠ 0))
183, 17mpd 15 1 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156  cmin 11490  -cneg 11491  cn 12264  0cn0 12524  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612
This theorem is referenced by:  dmgmn0  27084  dmgmdivn0  27086  lgamcvg2  27113
  Copyright terms: Public domain W3C validator