![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsmultr1d | Structured version Visualization version GIF version |
Description: Natural deduction form of dvdsmultr1 15436. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
dvdsmultr1d.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
dvdsmultr1d.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvdsmultr1d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdsmultr1d.4 | ⊢ (𝜑 → 𝐾 ∥ 𝑀) |
Ref | Expression |
---|---|
dvdsmultr1d | ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsmultr1d.4 | . 2 ⊢ (𝜑 → 𝐾 ∥ 𝑀) | |
2 | dvdsmultr1d.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
3 | dvdsmultr1d.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | dvdsmultr1d.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | dvdsmultr1 15436 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀 · 𝑁))) | |
6 | 2, 3, 4, 5 | syl3anc 1439 | . 2 ⊢ (𝜑 → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀 · 𝑁))) |
7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 4888 (class class class)co 6924 · cmul 10279 ℤcz 11733 ∥ cdvds 15396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 df-sub 10610 df-neg 10611 df-nn 11380 df-n0 11648 df-z 11734 df-dvds 15397 |
This theorem is referenced by: dvdsmod 15467 dvdsmulgcd 15690 bezoutr 15697 mulgcddvds 15784 phimullem 15899 odadd1 18648 ablfacrp 18863 ex-ind-dvds 27910 inductionexd 39423 etransclem25 41417 |
Copyright terms: Public domain | W3C validator |