MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Visualization version   GIF version

Theorem mulgcddvds 16692
Description: One half of rpmulgcd2 16693, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1137 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
2 simp2 1138 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp3 1139 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
42, 3zmulcld 12728 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16545 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
65nn0zd 12639 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
7 dvds0 16309 . . . . 5 ((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
86, 7syl 17 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
98adantr 480 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
10 oveq2 7439 . . . 4 ((𝐾 gcd 𝑁) = 0 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = ((𝐾 gcd 𝑀) · 0))
111, 2gcdcld 16545 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℕ0)
1211nn0cnd 12589 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℂ)
1312mul01d 11460 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) · 0) = 0)
1410, 13sylan9eqr 2799 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = 0)
159, 14breqtrrd 5171 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
166adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
1716zcnd 12723 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℂ)
181, 3gcdcld 16545 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℕ0)
1918nn0zd 12639 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℤ)
2019adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℤ)
2120zcnd 12723 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℂ)
22 simpr 484 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ≠ 0)
2317, 21, 22divcan1d 12044 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
24 gcddvds 16540 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
251, 4, 24syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
2625simpld 494 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾)
276, 1, 19, 26dvdsmultr1d 16334 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2827adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2923, 28eqbrtrd 5165 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
30 gcddvds 16540 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
311, 3, 30syl2anc 584 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
3231simpld 494 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝐾)
3331simprd 495 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝑁)
34 dvdsmultr2 16335 . . . . . . . . . . . 12 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3519, 2, 3, 34syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3633, 35mpd 15 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁))
37 dvdsgcd 16581 . . . . . . . . . . 11 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3819, 1, 4, 37syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3932, 36, 38mp2and 699 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
4039adantr 480 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
41 dvdsval2 16293 . . . . . . . . 9 (((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4220, 22, 16, 41syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4340, 42mpbid 232 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ)
441adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝐾 ∈ ℤ)
45 dvdsmulcr 16323 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4643, 44, 20, 22, 45syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4729, 46mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾)
48 nn0abscl 15351 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
492, 48syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
5049nn0zd 12639 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℤ)
51 dvdsmultr2 16335 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
526, 50, 1, 51syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
5326, 52mpd 15 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾))
5450, 3zmulcld 12728 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝑁) ∈ ℤ)
5525simprd 495 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁))
56 iddvds 16307 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀𝑀)
572, 56syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀𝑀)
58 dvdsabsb 16313 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
592, 2, 58syl2anc 584 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘𝑀))
61 dvdsmulc 16321 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
622, 50, 3, 61syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
6360, 62mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁))
646, 4, 54, 55, 63dvdstrd 16332 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁))
6550, 1zmulcld 12728 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝐾) ∈ ℤ)
66 dvdsgcd 16581 . . . . . . . . . . . 12 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ ((abs‘𝑀) · 𝐾) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
676, 65, 54, 66syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
6853, 64, 67mp2and 699 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
6918nn0red 12588 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℝ)
7018nn0ge0d 12590 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝐾 gcd 𝑁))
7169, 70absidd 15461 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 gcd 𝑁)) = (𝐾 gcd 𝑁))
7271oveq2d 7447 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
732zcnd 12723 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7418nn0cnd 12589 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℂ)
7573, 74absmuld 15493 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))))
76 mulgcd 16585 . . . . . . . . . . . 12 (((abs‘𝑀) ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7749, 1, 3, 76syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7872, 75, 773eqtr4d 2787 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
7968, 78breqtrrd 5171 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁))))
802, 19zmulcld 12728 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ)
81 dvdsabsb 16313 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
826, 80, 81syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
8379, 82mpbird 257 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8483adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8523, 84eqbrtrd 5165 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
862adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝑀 ∈ ℤ)
87 dvdsmulcr 16323 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8843, 86, 20, 22, 87syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8985, 88mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀)
90 dvdsgcd 16581 . . . . . 6 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9143, 44, 86, 90syl3anc 1373 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9247, 89, 91mp2and 699 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
9311nn0zd 12639 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℤ)
9493adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑀) ∈ ℤ)
95 dvdsmulc 16321 . . . . 5 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9643, 94, 20, 95syl3anc 1373 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9792, 96mpd 15 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9823, 97eqbrtrrd 5167 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9915, 98pm2.61dane 3029 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155   · cmul 11160   / cdiv 11920  0cn0 12526  cz 12613  abscabs 15273  cdvds 16290   gcd cgcd 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532
This theorem is referenced by:  rpmulgcd2  16693  rpmul  16696
  Copyright terms: Public domain W3C validator