MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Visualization version   GIF version

Theorem mulgcddvds 16576
Description: One half of rpmulgcd2 16577, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
2 simp2 1137 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp3 1138 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
42, 3zmulcld 12593 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16429 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
65nn0zd 12504 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
7 dvds0 16192 . . . . 5 ((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
86, 7syl 17 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
98adantr 480 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
10 oveq2 7363 . . . 4 ((𝐾 gcd 𝑁) = 0 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = ((𝐾 gcd 𝑀) · 0))
111, 2gcdcld 16429 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℕ0)
1211nn0cnd 12454 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℂ)
1312mul01d 11322 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) · 0) = 0)
1410, 13sylan9eqr 2790 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = 0)
159, 14breqtrrd 5123 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
166adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
1716zcnd 12588 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℂ)
181, 3gcdcld 16429 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℕ0)
1918nn0zd 12504 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℤ)
2019adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℤ)
2120zcnd 12588 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℂ)
22 simpr 484 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ≠ 0)
2317, 21, 22divcan1d 11908 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
24 gcddvds 16424 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
251, 4, 24syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
2625simpld 494 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾)
276, 1, 19, 26dvdsmultr1d 16218 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2827adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2923, 28eqbrtrd 5117 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
30 gcddvds 16424 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
311, 3, 30syl2anc 584 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
3231simpld 494 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝐾)
3331simprd 495 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝑁)
34 dvdsmultr2 16219 . . . . . . . . . . . 12 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3519, 2, 3, 34syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3633, 35mpd 15 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁))
37 dvdsgcd 16465 . . . . . . . . . . 11 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3819, 1, 4, 37syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3932, 36, 38mp2and 699 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
4039adantr 480 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
41 dvdsval2 16176 . . . . . . . . 9 (((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4220, 22, 16, 41syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4340, 42mpbid 232 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ)
441adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝐾 ∈ ℤ)
45 dvdsmulcr 16206 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4643, 44, 20, 22, 45syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4729, 46mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾)
48 nn0abscl 15229 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
492, 48syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
5049nn0zd 12504 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℤ)
51 dvdsmultr2 16219 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
526, 50, 1, 51syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
5326, 52mpd 15 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾))
5450, 3zmulcld 12593 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝑁) ∈ ℤ)
5525simprd 495 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁))
56 iddvds 16190 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀𝑀)
572, 56syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀𝑀)
58 dvdsabsb 16196 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
592, 2, 58syl2anc 584 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘𝑀))
61 dvdsmulc 16204 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
622, 50, 3, 61syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
6360, 62mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁))
646, 4, 54, 55, 63dvdstrd 16216 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁))
6550, 1zmulcld 12593 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝐾) ∈ ℤ)
66 dvdsgcd 16465 . . . . . . . . . . . 12 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ ((abs‘𝑀) · 𝐾) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
676, 65, 54, 66syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
6853, 64, 67mp2and 699 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
6918nn0red 12453 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℝ)
7018nn0ge0d 12455 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝐾 gcd 𝑁))
7169, 70absidd 15340 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 gcd 𝑁)) = (𝐾 gcd 𝑁))
7271oveq2d 7371 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
732zcnd 12588 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7418nn0cnd 12454 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℂ)
7573, 74absmuld 15374 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))))
76 mulgcd 16469 . . . . . . . . . . . 12 (((abs‘𝑀) ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7749, 1, 3, 76syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7872, 75, 773eqtr4d 2778 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
7968, 78breqtrrd 5123 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁))))
802, 19zmulcld 12593 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ)
81 dvdsabsb 16196 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
826, 80, 81syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
8379, 82mpbird 257 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8483adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8523, 84eqbrtrd 5117 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
862adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝑀 ∈ ℤ)
87 dvdsmulcr 16206 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8843, 86, 20, 22, 87syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8985, 88mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀)
90 dvdsgcd 16465 . . . . . 6 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9143, 44, 86, 90syl3anc 1373 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9247, 89, 91mp2and 699 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
9311nn0zd 12504 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℤ)
9493adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑀) ∈ ℤ)
95 dvdsmulc 16204 . . . . 5 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9643, 94, 20, 95syl3anc 1373 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9792, 96mpd 15 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9823, 97eqbrtrrd 5119 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9915, 98pm2.61dane 3017 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  0cc0 11016   · cmul 11021   / cdiv 11784  0cn0 12391  cz 12478  abscabs 15151  cdvds 16173   gcd cgcd 16415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-dvds 16174  df-gcd 16416
This theorem is referenced by:  rpmulgcd2  16577  rpmul  16580
  Copyright terms: Public domain W3C validator