MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Visualization version   GIF version

Theorem mulgcddvds 16625
Description: One half of rpmulgcd2 16626, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
2 simp2 1137 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp3 1138 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
42, 3zmulcld 12644 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 16478 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
65nn0zd 12555 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
7 dvds0 16241 . . . . 5 ((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
86, 7syl 17 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
98adantr 480 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
10 oveq2 7395 . . . 4 ((𝐾 gcd 𝑁) = 0 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = ((𝐾 gcd 𝑀) · 0))
111, 2gcdcld 16478 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℕ0)
1211nn0cnd 12505 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℂ)
1312mul01d 11373 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) · 0) = 0)
1410, 13sylan9eqr 2786 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = 0)
159, 14breqtrrd 5135 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
166adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
1716zcnd 12639 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℂ)
181, 3gcdcld 16478 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℕ0)
1918nn0zd 12555 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℤ)
2019adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℤ)
2120zcnd 12639 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℂ)
22 simpr 484 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ≠ 0)
2317, 21, 22divcan1d 11959 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
24 gcddvds 16473 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
251, 4, 24syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
2625simpld 494 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾)
276, 1, 19, 26dvdsmultr1d 16267 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2827adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
2923, 28eqbrtrd 5129 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
30 gcddvds 16473 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
311, 3, 30syl2anc 584 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
3231simpld 494 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝐾)
3331simprd 495 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝑁)
34 dvdsmultr2 16268 . . . . . . . . . . . 12 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3519, 2, 3, 34syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3633, 35mpd 15 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁))
37 dvdsgcd 16514 . . . . . . . . . . 11 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3819, 1, 4, 37syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
3932, 36, 38mp2and 699 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
4039adantr 480 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
41 dvdsval2 16225 . . . . . . . . 9 (((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4220, 22, 16, 41syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4340, 42mpbid 232 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ)
441adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝐾 ∈ ℤ)
45 dvdsmulcr 16255 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4643, 44, 20, 22, 45syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4729, 46mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾)
48 nn0abscl 15278 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
492, 48syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
5049nn0zd 12555 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℤ)
51 dvdsmultr2 16268 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
526, 50, 1, 51syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
5326, 52mpd 15 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾))
5450, 3zmulcld 12644 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝑁) ∈ ℤ)
5525simprd 495 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁))
56 iddvds 16239 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀𝑀)
572, 56syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀𝑀)
58 dvdsabsb 16245 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
592, 2, 58syl2anc 584 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘𝑀))
61 dvdsmulc 16253 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
622, 50, 3, 61syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
6360, 62mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁))
646, 4, 54, 55, 63dvdstrd 16265 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁))
6550, 1zmulcld 12644 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝐾) ∈ ℤ)
66 dvdsgcd 16514 . . . . . . . . . . . 12 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ ((abs‘𝑀) · 𝐾) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
676, 65, 54, 66syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
6853, 64, 67mp2and 699 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
6918nn0red 12504 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℝ)
7018nn0ge0d 12506 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝐾 gcd 𝑁))
7169, 70absidd 15389 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 gcd 𝑁)) = (𝐾 gcd 𝑁))
7271oveq2d 7403 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
732zcnd 12639 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7418nn0cnd 12505 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℂ)
7573, 74absmuld 15423 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))))
76 mulgcd 16518 . . . . . . . . . . . 12 (((abs‘𝑀) ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7749, 1, 3, 76syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
7872, 75, 773eqtr4d 2774 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
7968, 78breqtrrd 5135 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁))))
802, 19zmulcld 12644 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ)
81 dvdsabsb 16245 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
826, 80, 81syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
8379, 82mpbird 257 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8483adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8523, 84eqbrtrd 5129 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
862adantr 480 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝑀 ∈ ℤ)
87 dvdsmulcr 16255 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8843, 86, 20, 22, 87syl112anc 1376 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
8985, 88mpbid 232 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀)
90 dvdsgcd 16514 . . . . . 6 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9143, 44, 86, 90syl3anc 1373 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9247, 89, 91mp2and 699 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
9311nn0zd 12555 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℤ)
9493adantr 480 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑀) ∈ ℤ)
95 dvdsmulc 16253 . . . . 5 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9643, 94, 20, 95syl3anc 1373 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
9792, 96mpd 15 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9823, 97eqbrtrrd 5131 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
9915, 98pm2.61dane 3012 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068   · cmul 11073   / cdiv 11835  0cn0 12442  cz 12529  abscabs 15200  cdvds 16222   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465
This theorem is referenced by:  rpmulgcd2  16626  rpmul  16629
  Copyright terms: Public domain W3C validator