MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   GIF version

Theorem expcl2lem 14089
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lem.4 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lem ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 12600 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 14088 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 412 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 480 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 766 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sselid 3956 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simprl 770 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1110recnd 11261 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
12 nnnn0 12506 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1312ad2antll 729 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
14 expneg2 14086 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
159, 11, 13, 14syl3anc 1373 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
16 difss 4111 . . . . . . . 8 (𝐹 ∖ {0}) ⊆ 𝐹
17 simpl 482 . . . . . . . . . 10 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 ≠ 0))
18 eldifsn 4762 . . . . . . . . . 10 (𝐴 ∈ (𝐹 ∖ {0}) ↔ (𝐴𝐹𝐴 ≠ 0))
1917, 18sylibr 234 . . . . . . . . 9 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ (𝐹 ∖ {0}))
2016, 2sstri 3968 . . . . . . . . . 10 (𝐹 ∖ {0}) ⊆ ℂ
2116sseli 3954 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → 𝑥𝐹)
2216sseli 3954 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → 𝑦𝐹)
2321, 22, 3syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ 𝐹)
24 eldifsn 4762 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐹 ∖ {0}) ↔ (𝑥𝐹𝑥 ≠ 0))
252sseli 3954 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2625anim1i 615 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 ≠ 0) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2724, 26sylbi 217 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 eldifsn 4762 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐹 ∖ {0}) ↔ (𝑦𝐹𝑦 ≠ 0))
292sseli 3954 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3029anim1i 615 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 ≠ 0) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3128, 30sylbi 217 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
32 mulne0 11877 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
3327, 31, 32syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
34 eldifsn 4762 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ (𝐹 ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) ≠ 0))
3523, 33, 34sylanbrc 583 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ (𝐹 ∖ {0}))
36 ax-1ne0 11196 . . . . . . . . . . 11 1 ≠ 0
37 eldifsn 4762 . . . . . . . . . . 11 (1 ∈ (𝐹 ∖ {0}) ↔ (1 ∈ 𝐹 ∧ 1 ≠ 0))
384, 36, 37mpbir2an 711 . . . . . . . . . 10 1 ∈ (𝐹 ∖ {0})
3920, 35, 38expcllem 14088 . . . . . . . . 9 ((𝐴 ∈ (𝐹 ∖ {0}) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4019, 13, 39syl2anc 584 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4116, 40sselid 3956 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
42 eldifsn 4762 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ (𝐹 ∖ {0}) ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4340, 42sylib 218 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4443simprd 495 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ≠ 0)
45 neeq1 2994 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 ≠ 0 ↔ (𝐴↑-𝐵) ≠ 0))
46 oveq2 7411 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
4746eleq1d 2819 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
4845, 47imbi12d 344 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
49 expcl2lem.4 . . . . . . . . 9 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
5049ex 412 . . . . . . . 8 (𝑥𝐹 → (𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹))
5148, 50vtoclga 3556 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5241, 44, 51sylc 65 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
5315, 52eqeltrd 2834 . . . . 5 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
5453ex 412 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
557, 54jaod 859 . . 3 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
561, 55biimtrid 242 . 2 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
57563impia 1117 1 ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cdif 3923  wss 3926  {csn 4601  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  -cneg 11465   / cdiv 11892  cn 12238  0cn0 12499  cz 12586  cexp 14077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-seq 14018  df-exp 14078
This theorem is referenced by:  rpexpcl  14096  qexpclz  14097  reexpclz  14098  expclzlem  14099  m1expcl2  14101  1exp  14107
  Copyright terms: Public domain W3C validator