MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   GIF version

Theorem expcl2lem 13437
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lem.4 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lem ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 11983 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 13436 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 416 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 484 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 766 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 3913 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simprl 770 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1110recnd 10658 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
12 nnnn0 11892 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1312ad2antll 728 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
14 expneg2 13434 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
159, 11, 13, 14syl3anc 1368 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
16 difss 4059 . . . . . . . 8 (𝐹 ∖ {0}) ⊆ 𝐹
17 simpl 486 . . . . . . . . . 10 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 ≠ 0))
18 eldifsn 4680 . . . . . . . . . 10 (𝐴 ∈ (𝐹 ∖ {0}) ↔ (𝐴𝐹𝐴 ≠ 0))
1917, 18sylibr 237 . . . . . . . . 9 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ (𝐹 ∖ {0}))
2016, 2sstri 3924 . . . . . . . . . 10 (𝐹 ∖ {0}) ⊆ ℂ
2116sseli 3911 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → 𝑥𝐹)
2216sseli 3911 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → 𝑦𝐹)
2321, 22, 3syl2an 598 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ 𝐹)
24 eldifsn 4680 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐹 ∖ {0}) ↔ (𝑥𝐹𝑥 ≠ 0))
252sseli 3911 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2625anim1i 617 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 ≠ 0) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2724, 26sylbi 220 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 eldifsn 4680 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐹 ∖ {0}) ↔ (𝑦𝐹𝑦 ≠ 0))
292sseli 3911 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3029anim1i 617 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 ≠ 0) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3128, 30sylbi 220 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
32 mulne0 11271 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
3327, 31, 32syl2an 598 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
34 eldifsn 4680 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ (𝐹 ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) ≠ 0))
3523, 33, 34sylanbrc 586 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ (𝐹 ∖ {0}))
36 ax-1ne0 10595 . . . . . . . . . . 11 1 ≠ 0
37 eldifsn 4680 . . . . . . . . . . 11 (1 ∈ (𝐹 ∖ {0}) ↔ (1 ∈ 𝐹 ∧ 1 ≠ 0))
384, 36, 37mpbir2an 710 . . . . . . . . . 10 1 ∈ (𝐹 ∖ {0})
3920, 35, 38expcllem 13436 . . . . . . . . 9 ((𝐴 ∈ (𝐹 ∖ {0}) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4019, 13, 39syl2anc 587 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4116, 40sseldi 3913 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
42 eldifsn 4680 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ (𝐹 ∖ {0}) ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4340, 42sylib 221 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4443simprd 499 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ≠ 0)
45 neeq1 3049 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 ≠ 0 ↔ (𝐴↑-𝐵) ≠ 0))
46 oveq2 7143 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
4746eleq1d 2874 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
4845, 47imbi12d 348 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
49 expcl2lem.4 . . . . . . . . 9 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
5049ex 416 . . . . . . . 8 (𝑥𝐹 → (𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹))
5148, 50vtoclga 3522 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5241, 44, 51sylc 65 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
5315, 52eqeltrd 2890 . . . . 5 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
5453ex 416 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
557, 54jaod 856 . . 3 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
561, 55syl5bi 245 . 2 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
57563impia 1114 1 ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cdif 3878  wss 3881  {csn 4525  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  rpexpcl  13444  reexpclz  13445  qexpclz  13446  m1expcl2  13447  expclzlem  13449  1exp  13454
  Copyright terms: Public domain W3C validator