MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   GIF version

Theorem expcl2lem 13722
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lem.4 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lem ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 12263 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 13721 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 412 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 480 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 763 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sselid 3915 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simprl 767 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1110recnd 10934 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
12 nnnn0 12170 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1312ad2antll 725 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
14 expneg2 13719 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
159, 11, 13, 14syl3anc 1369 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
16 difss 4062 . . . . . . . 8 (𝐹 ∖ {0}) ⊆ 𝐹
17 simpl 482 . . . . . . . . . 10 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 ≠ 0))
18 eldifsn 4717 . . . . . . . . . 10 (𝐴 ∈ (𝐹 ∖ {0}) ↔ (𝐴𝐹𝐴 ≠ 0))
1917, 18sylibr 233 . . . . . . . . 9 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ (𝐹 ∖ {0}))
2016, 2sstri 3926 . . . . . . . . . 10 (𝐹 ∖ {0}) ⊆ ℂ
2116sseli 3913 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → 𝑥𝐹)
2216sseli 3913 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → 𝑦𝐹)
2321, 22, 3syl2an 595 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ 𝐹)
24 eldifsn 4717 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐹 ∖ {0}) ↔ (𝑥𝐹𝑥 ≠ 0))
252sseli 3913 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2625anim1i 614 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 ≠ 0) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2724, 26sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∖ {0}) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
28 eldifsn 4717 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐹 ∖ {0}) ↔ (𝑦𝐹𝑦 ≠ 0))
292sseli 3913 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3029anim1i 614 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 ≠ 0) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3128, 30sylbi 216 . . . . . . . . . . . 12 (𝑦 ∈ (𝐹 ∖ {0}) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
32 mulne0 11547 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
3327, 31, 32syl2an 595 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
34 eldifsn 4717 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ (𝐹 ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) ≠ 0))
3523, 33, 34sylanbrc 582 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 ∖ {0}) ∧ 𝑦 ∈ (𝐹 ∖ {0})) → (𝑥 · 𝑦) ∈ (𝐹 ∖ {0}))
36 ax-1ne0 10871 . . . . . . . . . . 11 1 ≠ 0
37 eldifsn 4717 . . . . . . . . . . 11 (1 ∈ (𝐹 ∖ {0}) ↔ (1 ∈ 𝐹 ∧ 1 ≠ 0))
384, 36, 37mpbir2an 707 . . . . . . . . . 10 1 ∈ (𝐹 ∖ {0})
3920, 35, 38expcllem 13721 . . . . . . . . 9 ((𝐴 ∈ (𝐹 ∖ {0}) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4019, 13, 39syl2anc 583 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ (𝐹 ∖ {0}))
4116, 40sselid 3915 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
42 eldifsn 4717 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ (𝐹 ∖ {0}) ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4340, 42sylib 217 . . . . . . . 8 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) ≠ 0))
4443simprd 495 . . . . . . 7 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ≠ 0)
45 neeq1 3005 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 ≠ 0 ↔ (𝐴↑-𝐵) ≠ 0))
46 oveq2 7263 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
4746eleq1d 2823 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
4845, 47imbi12d 344 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
49 expcl2lem.4 . . . . . . . . 9 ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)
5049ex 412 . . . . . . . 8 (𝑥𝐹 → (𝑥 ≠ 0 → (1 / 𝑥) ∈ 𝐹))
5148, 50vtoclga 3503 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) ≠ 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5241, 44, 51sylc 65 . . . . . 6 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
5315, 52eqeltrd 2839 . . . . 5 (((𝐴𝐹𝐴 ≠ 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
5453ex 412 . . . 4 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
557, 54jaod 855 . . 3 ((𝐴𝐹𝐴 ≠ 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
561, 55syl5bi 241 . 2 ((𝐴𝐹𝐴 ≠ 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
57563impia 1115 1 ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  {csn 4558  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  rpexpcl  13729  reexpclz  13730  qexpclz  13731  m1expcl2  13732  expclzlem  13734  1exp  13740
  Copyright terms: Public domain W3C validator