MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulz Structured version   Visualization version   GIF version

Theorem expmulz 14070
Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
expmulz (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))

Proof of Theorem expmulz
StepHypRef Expression
1 elznn0nn 12568 . . 3 (๐‘ โˆˆ โ„ค โ†” (๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)))
2 elznn0nn 12568 . . . 4 (๐‘€ โˆˆ โ„ค โ†” (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)))
3 expmul 14069 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
433expia 1118 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
54adantlr 712 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
6 simp2l 1196 . . . . . . . . . . . . . 14 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„)
76recnd 11238 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„‚)
8 simp3 1135 . . . . . . . . . . . . . 14 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„•0)
98nn0cnd 12530 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„‚)
107, 9mulneg1d 11663 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (-๐‘€ ยท ๐‘) = -(๐‘€ ยท ๐‘))
1110oveq2d 7417 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = (๐ดโ†‘-(๐‘€ ยท ๐‘)))
12 simp1l 1194 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐ด โˆˆ โ„‚)
13 simp2r 1197 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„•)
1413nnnn0d 12528 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„•0)
15 expmul 14069 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1612, 14, 8, 15syl3anc 1368 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1711, 16eqtr3d 2766 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-(๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1817oveq2d 7417 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
19 expcl 14041 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
2012, 14, 19syl2anc 583 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
21 simp1r 1195 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐ด โ‰  0)
2213nnzd 12581 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„ค)
23 expne0i 14056 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง -๐‘€ โˆˆ โ„ค) โ†’ (๐ดโ†‘-๐‘€) โ‰  0)
2412, 21, 22, 23syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) โ‰  0)
258nn0zd 12580 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„ค)
26 exprec 14065 . . . . . . . . . 10 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
2720, 24, 25, 26syl3anc 1368 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
2818, 27eqtr4d 2767 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
297, 9mulcld 11230 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„‚)
3014, 8nn0mulcld 12533 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (-๐‘€ ยท ๐‘) โˆˆ โ„•0)
3110, 30eqeltrrd 2826 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -(๐‘€ ยท ๐‘) โˆˆ โ„•0)
32 expneg2 14032 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง (๐‘€ ยท ๐‘) โˆˆ โ„‚ โˆง -(๐‘€ ยท ๐‘) โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
3312, 29, 31, 32syl3anc 1368 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
34 expneg2 14032 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
3512, 7, 14, 34syl3anc 1368 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
3635oveq1d 7416 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
3728, 33, 363eqtr4d 2774 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
38373expia 1118 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
395, 38jaodan 954 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
40 simp2 1134 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„•0)
4140nn0cnd 12530 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„‚)
42 simp3l 1198 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„)
4342recnd 11238 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„‚)
4441, 43mulneg2d 11664 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท -๐‘) = -(๐‘€ ยท ๐‘))
4544oveq2d 7417 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = (๐ดโ†‘-(๐‘€ ยท ๐‘)))
46 simp1l 1194 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด โˆˆ โ„‚)
47 simp3r 1199 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•)
4847nnnn0d 12528 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•0)
49 expmul 14069 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0 โˆง -๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5046, 40, 48, 49syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5145, 50eqtr3d 2766 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5251oveq2d 7417 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
5341, 43mulcld 11230 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„‚)
5440, 48nn0mulcld 12533 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท -๐‘) โˆˆ โ„•0)
5544, 54eqeltrrd 2826 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -(๐‘€ ยท ๐‘) โˆˆ โ„•0)
5646, 53, 55, 32syl3anc 1368 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
57 expcl 14041 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐ดโ†‘๐‘€) โˆˆ โ„‚)
5846, 40, 57syl2anc 583 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘๐‘€) โˆˆ โ„‚)
59 expneg2 14032 . . . . . . . . 9 (((๐ดโ†‘๐‘€) โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
6058, 43, 48, 59syl3anc 1368 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
6152, 56, 603eqtr4d 2774 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
62613expia 1118 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„•0) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
63 simp1l 1194 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด โˆˆ โ„‚)
64 simp2l 1196 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„)
6564recnd 11238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„‚)
66 simp2r 1197 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„•)
6766nnnn0d 12528 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„•0)
6863, 65, 67, 34syl3anc 1368 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
6968oveq1d 7416 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
7063, 67, 19syl2anc 583 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
71 simp1r 1195 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด โ‰  0)
7266nnzd 12581 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„ค)
7363, 71, 72, 23syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-๐‘€) โ‰  0)
7470, 73reccld 11979 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (๐ดโ†‘-๐‘€)) โˆˆ โ„‚)
75 simp3l 1198 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„)
7675recnd 11238 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„‚)
77 simp3r 1199 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•)
7877nnnn0d 12528 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•0)
79 expneg2 14032 . . . . . . . . 9 (((1 / (๐ดโ†‘-๐‘€)) โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)))
8074, 76, 78, 79syl3anc 1368 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)))
8177nnzd 12581 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„ค)
82 exprec 14065 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) โ‰  0 โˆง -๐‘ โˆˆ โ„ค) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘)))
8370, 73, 81, 82syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘)))
8483oveq2d 7417 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)) = (1 / (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘))))
85 expcl 14041 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โˆˆ โ„‚)
8670, 78, 85syl2anc 583 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โˆˆ โ„‚)
87 expne0i 14056 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) โ‰  0 โˆง -๐‘ โˆˆ โ„ค) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โ‰  0)
8870, 73, 81, 87syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โ‰  0)
8986, 88recrecd 11983 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘))) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
90 expmul 14069 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0 โˆง -๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
9163, 67, 78, 90syl3anc 1368 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
9265, 76mul2negd 11665 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (-๐‘€ ยท -๐‘) = (๐‘€ ยท ๐‘))
9392oveq2d 7417 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
9491, 93eqtr3d 2766 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
9584, 89, 943eqtrd 2768 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
9669, 80, 953eqtrrd 2769 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
97963expia 1118 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
9862, 97jaodan 954 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
9939, 98jaod 856 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ ((๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
1002, 99sylan2b 593 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„ค) โ†’ ((๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
1011, 100biimtrid 241 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง ๐‘€ โˆˆ โ„ค) โ†’ (๐‘ โˆˆ โ„ค โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
102101impr 454 1 (((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆจ wo 844   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932  (class class class)co 7401  โ„‚cc 11103  โ„cr 11104  0cc0 11105  1c1 11106   ยท cmul 11110  -cneg 11441   / cdiv 11867  โ„•cn 12208  โ„•0cn0 12468  โ„คcz 12554  โ†‘cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-exp 14024
This theorem is referenced by:  iexpcyc  14167  iseraltlem2  15625  iseraltlem3  15626  dvexp3  25820  cxpeq  26596  atantayl2  26774  basellem3  26919  lgseisenlem1  27212  lgseisenlem4  27215  lgsquadlem1  27217  lgsquad2lem1  27221  m1lgs  27225  jm2.21  42188  fmtnorec1  46656  m1expevenALTV  46766  oexpnegnz  46797
  Copyright terms: Public domain W3C validator