Proof of Theorem expmulz
Step | Hyp | Ref
| Expression |
1 | | elznn0nn 12333 |
. . 3
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
2 | | elznn0nn 12333 |
. . . 4
⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℕ0 ∨
(𝑀 ∈ ℝ ∧
-𝑀 ∈
ℕ))) |
3 | | expmul 13828 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
4 | 3 | 3expia 1120 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 ∈
ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
5 | 4 | adantlr 712 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0
→ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
6 | | simp2l 1198 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝑀 ∈
ℝ) |
7 | 6 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝑀 ∈
ℂ) |
8 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) |
9 | 8 | nn0cnd 12295 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
10 | 7, 9 | mulneg1d 11428 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
11 | 10 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑(-𝑀 · 𝑁)) = (𝐴↑-(𝑀 · 𝑁))) |
12 | | simp1l 1196 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
13 | | simp2r 1199 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ -𝑀 ∈
ℕ) |
14 | 13 | nnnn0d 12293 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ -𝑀 ∈
ℕ0) |
15 | | expmul 13828 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
16 | 12, 14, 8, 15 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
17 | 11, 16 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑-(𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
18 | 17 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (1 / (𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
19 | | expcl 13800 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0)
→ (𝐴↑-𝑀) ∈
ℂ) |
20 | 12, 14, 19 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑-𝑀) ∈
ℂ) |
21 | | simp1r 1197 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝐴 ≠
0) |
22 | 13 | nnzd 12425 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ -𝑀 ∈
ℤ) |
23 | | expne0i 13815 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) ≠ 0) |
24 | 12, 21, 22, 23 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑-𝑀) ≠ 0) |
25 | 8 | nn0zd 12424 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
26 | | exprec 13824 |
. . . . . . . . . 10
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
27 | 20, 24, 25, 26 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
28 | 18, 27 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (1 / (𝐴↑-(𝑀 · 𝑁))) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
29 | 7, 9 | mulcld 10995 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝑀 · 𝑁) ∈
ℂ) |
30 | 14, 8 | nn0mulcld 12298 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (-𝑀 · 𝑁) ∈
ℕ0) |
31 | 10, 30 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ -(𝑀 · 𝑁) ∈
ℕ0) |
32 | | expneg2 13791 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑁) ∈ ℂ ∧ -(𝑀 · 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
33 | 12, 29, 31, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
34 | | expneg2 13791 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
35 | 12, 7, 14, 34 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
36 | 35 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ ((𝐴↑𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
37 | 28, 33, 36 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
38 | 37 | 3expia 1120 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → (𝑁 ∈ ℕ0
→ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
39 | 5, 38 | jaodan 955 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨
(𝑀 ∈ ℝ ∧
-𝑀 ∈ ℕ))) →
(𝑁 ∈
ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
40 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℕ0) |
41 | 40 | nn0cnd 12295 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℂ) |
42 | | simp3l 1200 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℝ) |
43 | 42 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℂ) |
44 | 41, 43 | mulneg2d 11429 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
45 | 44 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = (𝐴↑-(𝑀 · 𝑁))) |
46 | | simp1l 1196 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈
ℂ) |
47 | | simp3r 1201 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ) |
48 | 47 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) |
49 | | expmul 13828 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ -𝑁 ∈
ℕ0) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
50 | 46, 40, 48, 49 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
51 | 45, 50 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
52 | 51 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
(𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
53 | 41, 43 | mulcld 10995 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · 𝑁) ∈ ℂ) |
54 | 40, 48 | nn0mulcld 12298 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) ∈
ℕ0) |
55 | 44, 54 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 · 𝑁) ∈
ℕ0) |
56 | 46, 53, 55, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
57 | | expcl 13800 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℂ) |
58 | 46, 40, 57 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑀) ∈ ℂ) |
59 | | expneg2 13791 |
. . . . . . . . 9
⊢ (((𝐴↑𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴↑𝑀)↑𝑁) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
60 | 58, 43, 48, 59 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑀)↑𝑁) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
61 | 52, 56, 60 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
62 | 61 | 3expia 1120 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
63 | | simp1l 1196 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈
ℂ) |
64 | | simp2l 1198 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℝ) |
65 | 64 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℂ) |
66 | | simp2r 1199 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈
ℕ) |
67 | 66 | nnnn0d 12293 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈
ℕ0) |
68 | 63, 65, 67, 34 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
69 | 68 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
70 | 63, 67, 19 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ∈ ℂ) |
71 | | simp1r 1197 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0) |
72 | 66 | nnzd 12425 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈
ℤ) |
73 | 63, 71, 72, 23 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ≠ 0) |
74 | 70, 73 | reccld 11744 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
(𝐴↑-𝑀)) ∈ ℂ) |
75 | | simp3l 1200 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℝ) |
76 | 75 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℂ) |
77 | | simp3r 1201 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ) |
78 | 77 | nnnn0d 12293 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) |
79 | | expneg2 13791 |
. . . . . . . . 9
⊢ (((1 /
(𝐴↑-𝑀)) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((1 /
(𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁))) |
80 | 74, 76, 78, 79 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 /
(𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁))) |
81 | 77 | nnzd 12425 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℤ) |
82 | | exprec 13824 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) ≠ 0 ∧ -𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁))) |
83 | 70, 73, 81, 82 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 /
(𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁))) |
84 | 83 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
((1 / (𝐴↑-𝑀))↑-𝑁)) = (1 / (1 / ((𝐴↑-𝑀)↑-𝑁)))) |
85 | | expcl 13800 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ) |
86 | 70, 78, 85 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ) |
87 | | expne0i 13815 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) ≠ 0 ∧ -𝑁 ∈ ℤ) → ((𝐴↑-𝑀)↑-𝑁) ≠ 0) |
88 | 70, 73, 81, 87 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) ≠ 0) |
89 | 86, 88 | recrecd 11748 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (1
/ ((𝐴↑-𝑀)↑-𝑁))) = ((𝐴↑-𝑀)↑-𝑁)) |
90 | | expmul 13828 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0
∧ -𝑁 ∈
ℕ0) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁)) |
91 | 63, 67, 78, 90 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁)) |
92 | 65, 76 | mul2negd 11430 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
93 | 92 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = (𝐴↑(𝑀 · 𝑁))) |
94 | 91, 93 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) = (𝐴↑(𝑀 · 𝑁))) |
95 | 84, 89, 94 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
((1 / (𝐴↑-𝑀))↑-𝑁)) = (𝐴↑(𝑀 · 𝑁))) |
96 | 69, 80, 95 | 3eqtrrd 2783 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
97 | 96 | 3expia 1120 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
98 | 62, 97 | jaodan 955 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨
(𝑀 ∈ ℝ ∧
-𝑀 ∈ ℕ))) →
((𝑁 ∈ ℝ ∧
-𝑁 ∈ ℕ) →
(𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
99 | 39, 98 | jaod 856 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℕ0 ∨
(𝑀 ∈ ℝ ∧
-𝑀 ∈ ℕ))) →
((𝑁 ∈
ℕ0 ∨ (𝑁
∈ ℝ ∧ -𝑁
∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
100 | 2, 99 | sylan2b 594 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
101 | 1, 100 | syl5bi 241 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
102 | 101 | impr 455 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |