| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcid | Structured version Visualization version GIF version | ||
| Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| pcid | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn 12543 | . 2 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
| 2 | pcidlem 16843 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | |
| 3 | prmnn 16644 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ) |
| 5 | 4 | nncnd 12202 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ) | |
| 7 | 6 | recnd 11202 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ) |
| 8 | nnnn0 12449 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
| 9 | 8 | ad2antll 729 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0) |
| 10 | expneg2 14035 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) | |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) |
| 12 | 11 | oveq2d 7403 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴)))) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ) | |
| 14 | 1zzd 12564 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ) | |
| 15 | ax-1ne0 11137 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0) |
| 17 | 4, 9 | nnexpcld 14210 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ) |
| 18 | pcdiv 16823 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) | |
| 19 | 13, 14, 16, 17, 18 | syl121anc 1377 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) |
| 20 | pc1 16826 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0) |
| 22 | pcidlem 16843 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) | |
| 23 | 9, 22 | syldan 591 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) |
| 24 | 21, 23 | oveq12d 7405 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴)) |
| 25 | df-neg 11408 | . . . . . . 7 ⊢ --𝐴 = (0 − -𝐴) | |
| 26 | 7 | negnegd 11524 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴) |
| 27 | 25, 26 | eqtr3id 2778 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴) |
| 28 | 24, 27 | eqtrd 2764 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴) |
| 29 | 19, 28 | eqtrd 2764 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴) |
| 30 | 12, 29 | eqtrd 2764 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| 31 | 2, 30 | jaodan 959 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| 32 | 1, 31 | sylan2b 594 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 − cmin 11405 -cneg 11406 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ↑cexp 14026 ℙcprime 16641 pCnt cpc 16807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-pc 16808 |
| This theorem is referenced by: pcprmpw2 16853 pcaddlem 16859 expnprm 16873 sylow1lem1 19528 pgpfi 19535 ablfaclem3 20019 isppw2 27025 dvdsppwf1o 27096 lgsval2lem 27218 dchrisum0flblem1 27419 ostth3 27549 aks4d1p8d2 42073 |
| Copyright terms: Public domain | W3C validator |