Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcid | Structured version Visualization version GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
pcid | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 12263 | . 2 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
2 | pcidlem 16501 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | |
3 | prmnn 16307 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ) |
5 | 4 | nncnd 11919 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ) |
6 | simprl 767 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ) | |
7 | 6 | recnd 10934 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ) |
8 | nnnn0 12170 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
9 | 8 | ad2antll 725 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0) |
10 | expneg2 13719 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) | |
11 | 5, 7, 9, 10 | syl3anc 1369 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) |
12 | 11 | oveq2d 7271 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴)))) |
13 | simpl 482 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ) | |
14 | 1zzd 12281 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ) | |
15 | ax-1ne0 10871 | . . . . . . 7 ⊢ 1 ≠ 0 | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0) |
17 | 4, 9 | nnexpcld 13888 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ) |
18 | pcdiv 16481 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) | |
19 | 13, 14, 16, 17, 18 | syl121anc 1373 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) |
20 | pc1 16484 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0) |
22 | pcidlem 16501 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) | |
23 | 9, 22 | syldan 590 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) |
24 | 21, 23 | oveq12d 7273 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴)) |
25 | df-neg 11138 | . . . . . . 7 ⊢ --𝐴 = (0 − -𝐴) | |
26 | 7 | negnegd 11253 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴) |
27 | 25, 26 | eqtr3id 2793 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴) |
28 | 24, 27 | eqtrd 2778 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴) |
29 | 19, 28 | eqtrd 2778 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴) |
30 | 12, 29 | eqtrd 2778 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
31 | 2, 30 | jaodan 954 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
32 | 1, 31 | sylan2b 593 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 − cmin 11135 -cneg 11136 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ↑cexp 13710 ℙcprime 16304 pCnt cpc 16465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 |
This theorem is referenced by: pcprmpw2 16511 pcaddlem 16517 expnprm 16531 sylow1lem1 19118 pgpfi 19125 ablfaclem3 19605 isppw2 26169 dvdsppwf1o 26240 lgsval2lem 26360 dchrisum0flblem1 26561 ostth3 26691 aks4d1p8d2 40021 |
Copyright terms: Public domain | W3C validator |