| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp11nnd | Structured version Visualization version GIF version | ||
| Description: The function elevating nonnegative reals to a positive integer is one-to-one. Similar to sq11d 14157 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴↑𝑁 = -𝐴↑𝑁. (Contributed by SN, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| exp11nnd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| exp11nnd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| exp11nnd.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| exp11nnd.4 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| Ref | Expression |
|---|---|
| exp11nnd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp11nnd.4 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
| 2 | exp11nnd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 3 | 2 | rpred 12926 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | exp11nnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | 4 | nnnn0d 12434 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 3, 5 | reexpcld 14062 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
| 7 | exp11nnd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 8 | 7 | rpred 12926 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8, 5 | reexpcld 14062 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℝ) |
| 10 | 6, 9 | lttri3d 11245 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) = (𝐵↑𝑁) ↔ (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁)))) |
| 11 | 1, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 12 | 2, 7, 4 | ltexp1d 14158 | . . . . 5 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
| 13 | 12 | notbid 318 | . . . 4 ⊢ (𝜑 → (¬ 𝐴 < 𝐵 ↔ ¬ (𝐴↑𝑁) < (𝐵↑𝑁))) |
| 14 | 7, 2, 4 | ltexp1d 14158 | . . . . 5 ⊢ (𝜑 → (𝐵 < 𝐴 ↔ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 15 | 14 | notbid 318 | . . . 4 ⊢ (𝜑 → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 16 | 13, 15 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) ↔ (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁)))) |
| 17 | 11, 16 | mpbird 257 | . 2 ⊢ (𝜑 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
| 18 | 3, 8 | lttri3d 11245 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 19 | 17, 18 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 < clt 11138 ℕcn 12117 ℝ+crp 12882 ↑cexp 13960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 |
| This theorem is referenced by: zrtelqelz 26688 expeq1d 42336 exp11d 42338 dvdsexpnn 42345 fltne 42656 |
| Copyright terms: Public domain | W3C validator |