| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp11nnd | Structured version Visualization version GIF version | ||
| Description: The function elevating nonnegative reals to a positive integer is one-to-one. Similar to sq11d 14281 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴↑𝑁 = -𝐴↑𝑁. (Contributed by SN, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| exp11nnd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| exp11nnd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| exp11nnd.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| exp11nnd.4 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| Ref | Expression |
|---|---|
| exp11nnd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp11nnd.4 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
| 2 | exp11nnd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 3 | 2 | rpred 13056 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | exp11nnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | 4 | nnnn0d 12567 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 3, 5 | reexpcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
| 7 | exp11nnd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 8 | 7 | rpred 13056 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8, 5 | reexpcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℝ) |
| 10 | 6, 9 | lttri3d 11380 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑁) = (𝐵↑𝑁) ↔ (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁)))) |
| 11 | 1, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 12 | 2, 7, 4 | ltexp1d 14282 | . . . . 5 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
| 13 | 12 | notbid 318 | . . . 4 ⊢ (𝜑 → (¬ 𝐴 < 𝐵 ↔ ¬ (𝐴↑𝑁) < (𝐵↑𝑁))) |
| 14 | 7, 2, 4 | ltexp1d 14282 | . . . . 5 ⊢ (𝜑 → (𝐵 < 𝐴 ↔ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 15 | 14 | notbid 318 | . . . 4 ⊢ (𝜑 → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵↑𝑁) < (𝐴↑𝑁))) |
| 16 | 13, 15 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) ↔ (¬ (𝐴↑𝑁) < (𝐵↑𝑁) ∧ ¬ (𝐵↑𝑁) < (𝐴↑𝑁)))) |
| 17 | 11, 16 | mpbird 257 | . 2 ⊢ (𝜑 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
| 18 | 3, 8 | lttri3d 11380 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 19 | 17, 18 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 < clt 11274 ℕcn 12245 ℝ+crp 13013 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: zrtelqelz 26725 expeq1d 42340 exp11d 42342 dvdsexpnn 42349 fltne 42634 |
| Copyright terms: Public domain | W3C validator |