MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp11nnd Structured version   Visualization version   GIF version

Theorem exp11nnd 14205
Description: The function elevating nonnegative reals to a positive integer is one-to-one. Similar to sq11d 14202 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴𝑁 = -𝐴𝑁. (Contributed by SN, 14-Sep-2023.)
Hypotheses
Ref Expression
exp11nnd.1 (𝜑𝐴 ∈ ℝ+)
exp11nnd.2 (𝜑𝐵 ∈ ℝ+)
exp11nnd.3 (𝜑𝑁 ∈ ℕ)
exp11nnd.4 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
Assertion
Ref Expression
exp11nnd (𝜑𝐴 = 𝐵)

Proof of Theorem exp11nnd
StepHypRef Expression
1 exp11nnd.4 . . . 4 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
2 exp11nnd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
32rpred 12974 . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 exp11nnd.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12482 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 14107 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℝ)
7 exp11nnd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
87rpred 12974 . . . . . 6 (𝜑𝐵 ∈ ℝ)
98, 5reexpcld 14107 . . . . 5 (𝜑 → (𝐵𝑁) ∈ ℝ)
106, 9lttri3d 11293 . . . 4 (𝜑 → ((𝐴𝑁) = (𝐵𝑁) ↔ (¬ (𝐴𝑁) < (𝐵𝑁) ∧ ¬ (𝐵𝑁) < (𝐴𝑁))))
111, 10mpbid 232 . . 3 (𝜑 → (¬ (𝐴𝑁) < (𝐵𝑁) ∧ ¬ (𝐵𝑁) < (𝐴𝑁)))
122, 7, 4ltexp1d 14203 . . . . 5 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
1312notbid 318 . . . 4 (𝜑 → (¬ 𝐴 < 𝐵 ↔ ¬ (𝐴𝑁) < (𝐵𝑁)))
147, 2, 4ltexp1d 14203 . . . . 5 (𝜑 → (𝐵 < 𝐴 ↔ (𝐵𝑁) < (𝐴𝑁)))
1514notbid 318 . . . 4 (𝜑 → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵𝑁) < (𝐴𝑁)))
1613, 15anbi12d 632 . . 3 (𝜑 → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) ↔ (¬ (𝐴𝑁) < (𝐵𝑁) ∧ ¬ (𝐵𝑁) < (𝐴𝑁))))
1711, 16mpbird 257 . 2 (𝜑 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
183, 8lttri3d 11293 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
1917, 18mpbird 257 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7370   < clt 11187  cn 12165  +crp 12930  cexp 14005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-n0 12422  df-z 12509  df-uz 12773  df-rp 12931  df-seq 13946  df-exp 14006
This theorem is referenced by:  zrtelqelz  26703  expeq1d  42307  exp11d  42309  dvdsexpnn  42316  fltne  42627
  Copyright terms: Public domain W3C validator