Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reexpcld | Structured version Visualization version GIF version |
Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
reexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
reexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
reexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | reexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | reexpcl 13727 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
Copyright terms: Public domain | W3C validator |