Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2104
(class class class)co 7411 ℝcr 11111
ℕ0cn0 12476
↑cexp 14031 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563
df-uz 12827 df-seq 13971 df-exp 14032 |
This theorem is referenced by: expmordi
14136 faclbnd
14254 facubnd
14264 explecnv
15815 geomulcvg
15826 cvgrat
15833 efcllem
16025 eftlub
16056 bitsfzolem
16379 bitsfzo
16380 vfermltlALT
16739 pclem
16775 dvdsprmpweqle
16823 taylthlem2
26122 radcnvlem1
26161 abelthlem7
26186 advlogexp
26399 leibpi
26683 ftalem1
26813 ftalem2
26814 ftalem5
26817 vma1
26906 logexprlim
26964 bposlem6
27028 gausslemma2dlem6
27111 rplogsumlem2
27224 rpvmasumlem
27226 dchrisum0flblem1
27247 pntlem3
27348 ostth2lem1
27357 ostth2lem2
27373 ostth2lem3
27374 ostth3
27377 numclwwlk5
29908 nexple
33305 eulerpartlemgc
33659 signsply0
33860 knoppcnlem2
35673 knoppcnlem4
35675 knoppcnlem6
35677 knoppcnlem10
35681 knoppndvlem11
35701 knoppndvlem14
35704 knoppndvlem15
35705 knoppndvlem17
35707 knoppndvlem18
35708 knoppndvlem21
35711 geomcau
36930 bfplem1
36993 lcmineqlem21
41220 lcmineqlem22
41221 3lexlogpow5ineq4
41227 3lexlogpow5ineq3
41228 3lexlogpow2ineq2
41230 3lexlogpow5ineq5
41231 aks4d1lem1
41233 aks4d1p1p3
41240 aks4d1p1p2
41241 aks4d1p1p4
41242 aks4d1p1p6
41244 aks4d1p1p7
41245 aks4d1p1p5
41246 aks4d1p1
41247 aks4d1p2
41248 aks4d1p3
41249 aks4d1p5
41251 aks4d1p6
41252 aks4d1p7d1
41253 aks4d1p7
41254 aks4d1p8d2
41256 aks4d1p8
41258 2ap1caineq
41267 oexpreposd
41514 exp11nnd
41517 dffltz
41678 fltltc
41705 fltnltalem
41706 fltnlta
41707 negexpidd
41722 3cubeslem3r
41727 3cubeslem4
41729 jm2.17a
42001 jm2.17b
42002 jm2.17c
42003 jm3.1lem1
42058 jm3.1lem2
42059 xralrple4
44381 stoweidlem1
45015 stoweidlem3
45017 stoweidlem7
45021 stoweidlem12
45026 stoweidlem19
45033 stoweidlem24
45038 stoweidlem25
45039 stoweidlem40
45054 stoweidlem42
45056 stoweidlem45
45059 wallispilem1
45079 stirlinglem10
45097 stirlinglem11
45098 stirlingr
45104 etransclem23
45271 etransclem48
45296 sge0ad2en
45445 ovnsubaddlem1
45584 hoiqssbllem2
45637 lighneallem2
46572 fllog2
47341 nnolog2flm1
47363 dig2nn1st
47378 dignn0flhalflem2
47389 nn0sumshdiglemA
47392 |