Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7411 ℝcr 11111
ℕ0cn0 12474
↑cexp 14029 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-n0 12475 df-z 12561
df-uz 12825 df-seq 13969 df-exp 14030 |
This theorem is referenced by: expmordi
14134 faclbnd
14252 facubnd
14262 explecnv
15813 geomulcvg
15824 cvgrat
15831 efcllem
16023 eftlub
16054 bitsfzolem
16377 bitsfzo
16378 vfermltlALT
16737 pclem
16773 dvdsprmpweqle
16821 taylthlem2
25893 radcnvlem1
25932 abelthlem7
25957 advlogexp
26170 leibpi
26454 ftalem1
26584 ftalem2
26585 ftalem5
26588 vma1
26677 logexprlim
26735 bposlem6
26799 gausslemma2dlem6
26882 rplogsumlem2
26995 rpvmasumlem
26997 dchrisum0flblem1
27018 pntlem3
27119 ostth2lem1
27128 ostth2lem2
27144 ostth2lem3
27145 ostth3
27148 numclwwlk5
29679 nexple
33076 eulerpartlemgc
33430 signsply0
33631 knoppcnlem2
35456 knoppcnlem4
35458 knoppcnlem6
35460 knoppcnlem10
35464 knoppndvlem11
35484 knoppndvlem14
35487 knoppndvlem15
35488 knoppndvlem17
35490 knoppndvlem18
35491 knoppndvlem21
35494 geomcau
36713 bfplem1
36776 lcmineqlem21
41000 lcmineqlem22
41001 3lexlogpow5ineq4
41007 3lexlogpow5ineq3
41008 3lexlogpow2ineq2
41010 3lexlogpow5ineq5
41011 aks4d1lem1
41013 aks4d1p1p3
41020 aks4d1p1p2
41021 aks4d1p1p4
41022 aks4d1p1p6
41024 aks4d1p1p7
41025 aks4d1p1p5
41026 aks4d1p1
41027 aks4d1p2
41028 aks4d1p3
41029 aks4d1p5
41031 aks4d1p6
41032 aks4d1p7d1
41033 aks4d1p7
41034 aks4d1p8d2
41036 aks4d1p8
41038 2ap1caineq
41047 oexpreposd
41294 exp11nnd
41297 dffltz
41458 fltltc
41485 fltnltalem
41486 fltnlta
41487 negexpidd
41502 3cubeslem3r
41507 3cubeslem4
41509 jm2.17a
41781 jm2.17b
41782 jm2.17c
41783 jm3.1lem1
41838 jm3.1lem2
41839 xralrple4
44162 stoweidlem1
44796 stoweidlem3
44798 stoweidlem7
44802 stoweidlem12
44807 stoweidlem19
44814 stoweidlem24
44819 stoweidlem25
44820 stoweidlem40
44835 stoweidlem42
44837 stoweidlem45
44840 wallispilem1
44860 stirlinglem10
44878 stirlinglem11
44879 stirlingr
44885 etransclem23
45052 etransclem48
45077 sge0ad2en
45226 ovnsubaddlem1
45365 hoiqssbllem2
45418 lighneallem2
46353 fllog2
47332 nnolog2flm1
47354 dig2nn1st
47369 dignn0flhalflem2
47380 nn0sumshdiglemA
47383 |