![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsexpnn | Structured version Visualization version GIF version |
Description: dvdssqlem 16507 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
dvdsexpnn | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12583 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
2 | nnz 12583 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
3 | nnnn0 12483 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | dvdsexpim 41521 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | |
5 | 1, 2, 3, 4 | syl3an 1158 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
6 | gcdnncl 16452 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
7 | 6 | nnrpd 13018 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ+) |
8 | 7 | 3adant3 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ+) |
9 | 8 | adantr 479 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) ∈ ℝ+) |
10 | simpl1 1189 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∈ ℕ) | |
11 | 10 | nnrpd 13018 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∈ ℝ+) |
12 | simpl3 1191 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝑁 ∈ ℕ) | |
13 | expgcd 41527 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | |
14 | 3, 13 | syl3an3 1163 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
15 | 14 | adantr 479 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
16 | simp1 1134 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ) | |
17 | 3 | 3ad2ant3 1133 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
18 | 16, 17 | nnexpcld 14212 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈ ℕ) |
19 | simp2 1135 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ) | |
20 | 19, 17 | nnexpcld 14212 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℕ) |
21 | gcdeq 16499 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ) → (((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | |
22 | 18, 20, 21 | syl2anc 582 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
23 | 22 | biimpar 476 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁)) |
24 | 15, 23 | eqtrd 2770 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴↑𝑁)) |
25 | 9, 11, 12, 24 | exp11nnd 41517 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) = 𝐴) |
26 | gcddvds 16448 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
27 | 26 | simprd 494 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
28 | 1, 2, 27 | syl2an 594 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
29 | 28 | 3adant3 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
30 | 29 | adantr 479 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) ∥ 𝐵) |
31 | 25, 30 | eqbrtrrd 5171 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∥ 𝐵) |
32 | 31 | ex 411 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) ∥ (𝐵↑𝑁) → 𝐴 ∥ 𝐵)) |
33 | 5, 32 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℕcn 12216 ℕ0cn0 12476 ℤcz 12562 ℝ+crp 12978 ↑cexp 14031 ∥ cdvds 16201 gcd cgcd 16439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16202 df-gcd 16440 |
This theorem is referenced by: dvdsexpnn0 41534 fltdvdsabdvdsc 41682 fltaccoprm 41684 |
Copyright terms: Public domain | W3C validator |