| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsexpnn | Structured version Visualization version GIF version | ||
| Description: dvdssqlem 16603 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvdsexpnn | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 12634 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 2 | nnz 12634 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 3 | nnnn0 12533 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 4 | dvdsexpim 16592 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | |
| 5 | 1, 2, 3, 4 | syl3an 1161 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 6 | gcdnncl 16544 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
| 7 | 6 | nnrpd 13075 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ+) |
| 8 | 7 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ+) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) ∈ ℝ+) |
| 10 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∈ ℕ) | |
| 11 | 10 | nnrpd 13075 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∈ ℝ+) |
| 12 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝑁 ∈ ℕ) | |
| 13 | expgcd 16600 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | |
| 14 | 3, 13 | syl3an3 1166 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 16 | simp1 1137 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ) | |
| 17 | 3 | 3ad2ant3 1136 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 18 | 16, 17 | nnexpcld 14284 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈ ℕ) |
| 19 | simp2 1138 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ) | |
| 20 | 19, 17 | nnexpcld 14284 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℕ) |
| 21 | gcdeq 16590 | . . . . . . . 8 ⊢ (((𝐴↑𝑁) ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ) → (((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 23 | 22 | biimpar 477 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (𝐴↑𝑁)) |
| 24 | 15, 23 | eqtrd 2777 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴↑𝑁)) |
| 25 | 9, 11, 12, 24 | exp11nnd 14300 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) = 𝐴) |
| 26 | gcddvds 16540 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
| 27 | 26 | simprd 495 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 28 | 1, 2, 27 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 29 | 28 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 31 | 25, 30 | eqbrtrrd 5167 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴↑𝑁) ∥ (𝐵↑𝑁)) → 𝐴 ∥ 𝐵) |
| 32 | 31 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) ∥ (𝐵↑𝑁) → 𝐴 ∥ 𝐵)) |
| 33 | 5, 32 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ℝ+crp 13034 ↑cexp 14102 ∥ cdvds 16290 gcd cgcd 16531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 |
| This theorem is referenced by: dvdsexpnn0 42369 fltdvdsabdvdsc 42648 fltaccoprm 42650 |
| Copyright terms: Public domain | W3C validator |