| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for funcsetcestrc 18072. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| funcsetcestrclem3 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.f | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 2 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 3 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 3, 4, 5 | setc1strwun 18061 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝑈) |
| 7 | funcsetcestrclem3.e | . . . . . . 7 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 8 | 7, 4 | estrcbas 18033 | . . . . . 6 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 9 | 8 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → (Base‘𝐸) = 𝑈) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (Base‘𝐸) = 𝑈) |
| 11 | 6, 10 | eleqtrrd 2836 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ (Base‘𝐸)) |
| 12 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 13 | 11, 12 | eleqtrrdi 2844 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝐵) |
| 14 | 1, 13 | fmpt3d 7055 | 1 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 〈cop 4581 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 ωcom 7802 WUnicwun 10598 ndxcnx 17106 Basecbs 17122 SetCatcsetc 17984 ExtStrCatcestrc 18030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-wun 10600 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-plp 10881 df-ltp 10883 df-enr 10953 df-nr 10954 df-c 11019 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-setc 17985 df-estrc 18031 |
| This theorem is referenced by: embedsetcestrclem 18065 funcsetcestrc 18072 |
| Copyright terms: Public domain | W3C validator |