Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for funcsetcestrc 17881. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
Ref | Expression |
---|---|
funcsetcestrclem3 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.f | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
2 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | 2, 3, 4, 5 | setc1strwun 17870 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝑈) |
7 | funcsetcestrclem3.e | . . . . . . 7 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
8 | 7, 4 | estrcbas 17841 | . . . . . 6 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
9 | 8 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (Base‘𝐸) = 𝑈) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (Base‘𝐸) = 𝑈) |
11 | 6, 10 | eleqtrrd 2842 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ (Base‘𝐸)) |
12 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
13 | 11, 12 | eleqtrrdi 2850 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝐵) |
14 | 1, 13 | fmpt3d 6990 | 1 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 〈cop 4567 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 ωcom 7712 WUnicwun 10456 ndxcnx 16894 Basecbs 16912 SetCatcsetc 17790 ExtStrCatcestrc 17838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-wun 10458 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-plp 10739 df-ltp 10741 df-enr 10811 df-nr 10812 df-c 10877 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-setc 17791 df-estrc 17839 |
This theorem is referenced by: embedsetcestrclem 17874 funcsetcestrc 17881 |
Copyright terms: Public domain | W3C validator |