| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| funcsetcestrclem3 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.f | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 2 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 3 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 3, 4, 5 | setc1strwun 18121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝑈) |
| 7 | funcsetcestrclem3.e | . . . . . . 7 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 8 | 7, 4 | estrcbas 18093 | . . . . . 6 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 9 | 8 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → (Base‘𝐸) = 𝑈) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (Base‘𝐸) = 𝑈) |
| 11 | 6, 10 | eleqtrrd 2832 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ (Base‘𝐸)) |
| 12 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 13 | 11, 12 | eleqtrrdi 2840 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {〈(Base‘ndx), 𝑥〉} ∈ 𝐵) |
| 14 | 1, 13 | fmpt3d 7091 | 1 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 ωcom 7845 WUnicwun 10660 ndxcnx 17170 Basecbs 17186 SetCatcsetc 18044 ExtStrCatcestrc 18090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-wun 10662 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-plp 10943 df-ltp 10945 df-enr 11015 df-nr 11016 df-c 11081 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-setc 18045 df-estrc 18091 |
| This theorem is referenced by: embedsetcestrclem 18125 funcsetcestrc 18132 |
| Copyright terms: Public domain | W3C validator |