MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfsadd Structured version   Visualization version   GIF version

Theorem gsummptfsadd 19910
Description: The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 9-Jul-2019.)
Hypotheses
Ref Expression
gsummptfsadd.b 𝐵 = (Base‘𝐺)
gsummptfsadd.z 0 = (0g𝐺)
gsummptfsadd.p + = (+g𝐺)
gsummptfsadd.g (𝜑𝐺 ∈ CMnd)
gsummptfsadd.a (𝜑𝐴𝑉)
gsummptfsadd.c ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptfsadd.d ((𝜑𝑥𝐴) → 𝐷𝐵)
gsummptfsadd.f (𝜑𝐹 = (𝑥𝐴𝐶))
gsummptfsadd.h (𝜑𝐻 = (𝑥𝐴𝐷))
gsummptfsadd.w (𝜑𝐹 finSupp 0 )
gsummptfsadd.v (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsummptfsadd (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥, +
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑉(𝑥)   0 (𝑥)

Proof of Theorem gsummptfsadd
StepHypRef Expression
1 gsummptfsadd.a . . . . 5 (𝜑𝐴𝑉)
2 gsummptfsadd.c . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 gsummptfsadd.d . . . . 5 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 gsummptfsadd.f . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐶))
5 gsummptfsadd.h . . . . 5 (𝜑𝐻 = (𝑥𝐴𝐷))
61, 2, 3, 4, 5offval2 7696 . . . 4 (𝜑 → (𝐹f + 𝐻) = (𝑥𝐴 ↦ (𝐶 + 𝐷)))
76eqcomd 2742 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 + 𝐷)) = (𝐹f + 𝐻))
87oveq2d 7426 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = (𝐺 Σg (𝐹f + 𝐻)))
9 gsummptfsadd.b . . 3 𝐵 = (Base‘𝐺)
10 gsummptfsadd.z . . 3 0 = (0g𝐺)
11 gsummptfsadd.p . . 3 + = (+g𝐺)
12 gsummptfsadd.g . . 3 (𝜑𝐺 ∈ CMnd)
134, 2fmpt3d 7111 . . 3 (𝜑𝐹:𝐴𝐵)
145, 3fmpt3d 7111 . . 3 (𝜑𝐻:𝐴𝐵)
15 gsummptfsadd.w . . 3 (𝜑𝐹 finSupp 0 )
16 gsummptfsadd.v . . 3 (𝜑𝐻 finSupp 0 )
179, 10, 11, 12, 1, 13, 14, 15, 16gsumadd 19909 . 2 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
188, 17eqtrd 2771 1 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  f cof 7674   finSupp cfsupp 9378  Basecbs 17233  +gcplusg 17276  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  gsummptfidmadd  19911  frlmphl  21746  pm2mpghm  22759  elrgspnlem1  33242  mhphf  42587  lincsum  48372
  Copyright terms: Public domain W3C validator