MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxf Structured version   Visualization version   GIF version

Theorem pfxf 14089
Description: A prefix of a word is a function from a half-open range of nonnegative integers of the same length as the prefix to the set of symbols for the original word. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxf ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉)

Proof of Theorem pfxf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pfxmpt 14087 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑊𝑥)))
2 simpll 766 . . 3 (((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
3 elfzuz3 12953 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐿))
43adantl 485 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝐿))
5 fzoss2 13114 . . . . 5 ((♯‘𝑊) ∈ (ℤ𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊)))
64, 5syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^𝐿) ⊆ (0..^(♯‘𝑊)))
76sselda 3892 . . 3 (((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^(♯‘𝑊)))
8 wrdsymbcl 13926 . . 3 ((𝑊 ∈ Word 𝑉𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) ∈ 𝑉)
92, 7, 8syl2anc 587 . 2 (((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑊𝑥) ∈ 𝑉)
101, 9fmpt3d 6871 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wss 3858  wf 6331  cfv 6335  (class class class)co 7150  0cc0 10575  cuz 12282  ...cfz 12939  ..^cfzo 13082  chash 13740  Word cword 13913   prefix cpfx 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-substr 14050  df-pfx 14080
This theorem is referenced by:  pfxfn  14090  pfxid  14093  pfxrn  14094  pfxn0  14095
  Copyright terms: Public domain W3C validator