Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptfssub | Structured version Visualization version GIF version |
Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.) |
Ref | Expression |
---|---|
gsummptfssub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfssub.z | ⊢ 0 = (0g‘𝐺) |
gsummptfssub.s | ⊢ − = (-g‘𝐺) |
gsummptfssub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsummptfssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptfssub.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
gsummptfssub.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
gsummptfssub.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
gsummptfssub.h | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
gsummptfssub.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsummptfssub.v | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsummptfssub | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfssub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | gsummptfssub.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
3 | gsummptfssub.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
4 | gsummptfssub.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
5 | gsummptfssub.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) | |
6 | 1, 2, 3, 4, 5 | offval2 7627 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) |
7 | 6 | eqcomd 2743 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷)) = (𝐹 ∘f − 𝐻)) |
8 | 7 | oveq2d 7365 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = (𝐺 Σg (𝐹 ∘f − 𝐻))) |
9 | gsummptfssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
10 | gsummptfssub.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
11 | gsummptfssub.s | . . 3 ⊢ − = (-g‘𝐺) | |
12 | gsummptfssub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
13 | 4, 2 | fmpt3d 7058 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 5, 3 | fmpt3d 7058 | . . 3 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
15 | gsummptfssub.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
16 | gsummptfssub.v | . . 3 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
17 | 9, 10, 11, 12, 1, 13, 14, 15, 16 | gsumsub 19651 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
18 | 8, 17 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 class class class wbr 5103 ↦ cmpt 5186 ‘cfv 6491 (class class class)co 7349 ∘f cof 7605 finSupp cfsupp 9238 Basecbs 17017 0gc0g 17255 Σg cgsu 17256 -gcsg 18683 Abelcabl 19490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-se 5586 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-isom 6500 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7607 df-om 7793 df-1st 7911 df-2nd 7912 df-supp 8060 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-er 8581 df-map 8700 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-fsupp 9239 df-oi 9379 df-card 9808 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-n0 12347 df-z 12433 df-uz 12696 df-fz 13353 df-fzo 13496 df-seq 13835 df-hash 14158 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-0g 17257 df-gsum 17258 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-mhm 18535 df-submnd 18536 df-grp 18684 df-minusg 18685 df-sbg 18686 df-ghm 18936 df-cntz 19027 df-cmn 19491 df-abl 19492 |
This theorem is referenced by: gsummptfidmsub 19653 |
Copyright terms: Public domain | W3C validator |