![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfssub | Structured version Visualization version GIF version |
Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.) |
Ref | Expression |
---|---|
gsummptfssub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfssub.z | ⊢ 0 = (0g‘𝐺) |
gsummptfssub.s | ⊢ − = (-g‘𝐺) |
gsummptfssub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsummptfssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptfssub.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
gsummptfssub.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
gsummptfssub.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
gsummptfssub.h | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
gsummptfssub.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsummptfssub.v | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsummptfssub | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfssub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | gsummptfssub.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
3 | gsummptfssub.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
4 | gsummptfssub.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
5 | gsummptfssub.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) | |
6 | 1, 2, 3, 4, 5 | offval2 7694 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) |
7 | 6 | eqcomd 2737 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷)) = (𝐹 ∘f − 𝐻)) |
8 | 7 | oveq2d 7428 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = (𝐺 Σg (𝐹 ∘f − 𝐻))) |
9 | gsummptfssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
10 | gsummptfssub.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
11 | gsummptfssub.s | . . 3 ⊢ − = (-g‘𝐺) | |
12 | gsummptfssub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
13 | 4, 2 | fmpt3d 7117 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 5, 3 | fmpt3d 7117 | . . 3 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
15 | gsummptfssub.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
16 | gsummptfssub.v | . . 3 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
17 | 9, 10, 11, 12, 1, 13, 14, 15, 16 | gsumsub 19858 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
18 | 8, 17 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 finSupp cfsupp 9365 Basecbs 17149 0gc0g 17390 Σg cgsu 17391 -gcsg 18858 Abelcabl 19691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-gsum 17393 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 |
This theorem is referenced by: gsummptfidmsub 19860 |
Copyright terms: Public domain | W3C validator |