MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfssub Structured version   Visualization version   GIF version

Theorem gsummptfssub 19652
Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
gsummptfssub.b 𝐵 = (Base‘𝐺)
gsummptfssub.z 0 = (0g𝐺)
gsummptfssub.s = (-g𝐺)
gsummptfssub.g (𝜑𝐺 ∈ Abel)
gsummptfssub.a (𝜑𝐴𝑉)
gsummptfssub.c ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptfssub.d ((𝜑𝑥𝐴) → 𝐷𝐵)
gsummptfssub.f (𝜑𝐹 = (𝑥𝐴𝐶))
gsummptfssub.h (𝜑𝐻 = (𝑥𝐴𝐷))
gsummptfssub.w (𝜑𝐹 finSupp 0 )
gsummptfssub.v (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsummptfssub (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 𝐷))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑉(𝑥)   0 (𝑥)

Proof of Theorem gsummptfssub
StepHypRef Expression
1 gsummptfssub.a . . . . 5 (𝜑𝐴𝑉)
2 gsummptfssub.c . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 gsummptfssub.d . . . . 5 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 gsummptfssub.f . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐶))
5 gsummptfssub.h . . . . 5 (𝜑𝐻 = (𝑥𝐴𝐷))
61, 2, 3, 4, 5offval2 7627 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑥𝐴 ↦ (𝐶 𝐷)))
76eqcomd 2743 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 𝐷)) = (𝐹f 𝐻))
87oveq2d 7365 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝐹f 𝐻)))
9 gsummptfssub.b . . 3 𝐵 = (Base‘𝐺)
10 gsummptfssub.z . . 3 0 = (0g𝐺)
11 gsummptfssub.s . . 3 = (-g𝐺)
12 gsummptfssub.g . . 3 (𝜑𝐺 ∈ Abel)
134, 2fmpt3d 7058 . . 3 (𝜑𝐹:𝐴𝐵)
145, 3fmpt3d 7058 . . 3 (𝜑𝐻:𝐴𝐵)
15 gsummptfssub.w . . 3 (𝜑𝐹 finSupp 0 )
16 gsummptfssub.v . . 3 (𝜑𝐻 finSupp 0 )
179, 10, 11, 12, 1, 13, 14, 15, 16gsumsub 19651 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
188, 17eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 𝐷))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106   class class class wbr 5103  cmpt 5186  cfv 6491  (class class class)co 7349  f cof 7605   finSupp cfsupp 9238  Basecbs 17017  0gc0g 17255   Σg cgsu 17256  -gcsg 18683  Abelcabl 19490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-er 8581  df-map 8700  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-oi 9379  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-nn 12087  df-2 12149  df-n0 12347  df-z 12433  df-uz 12696  df-fz 13353  df-fzo 13496  df-seq 13835  df-hash 14158  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-0g 17257  df-gsum 17258  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-mhm 18535  df-submnd 18536  df-grp 18684  df-minusg 18685  df-sbg 18686  df-ghm 18936  df-cntz 19027  df-cmn 19491  df-abl 19492
This theorem is referenced by:  gsummptfidmsub  19653
  Copyright terms: Public domain W3C validator