MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan2 Structured version   Visualization version   GIF version

Theorem pncan2 11435
Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
Assertion
Ref Expression
pncan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)

Proof of Theorem pncan2
StepHypRef Expression
1 addcom 11367 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
21oveq1d 7405 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴))
3 pncan 11434 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵)
42, 3eqtr3d 2767 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
54ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073   + caddc 11078  cmin 11412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414
This theorem is referenced by:  subid  11448  pnpcan  11468  pnncan  11470  pncan2d  11542  fzrev3  13558  fzrevral3  13582  fzosubel2  13693  facndiv  14260  bcnp1n  14286  lswccatn0lsw  14563  swrds1  14638  swrdccat2  14641  swrdccat3b  14712  revccat  14738  trireciplem  15835  psgnunilem2  19432  efgredleme  19680  pjthlem1  25344  uniioombllem3  25493  dyadovol  25501  dvfsumle  25933  dvfsumleOLD  25934  qaa  26238  geolim3  26254  pserdv2  26347  logtayl  26576  tanatan  26836  atans2  26848  efrlim  26886  efrlimOLD  26887  ppidif  27080  ppiub  27122  bposlem9  27210  pntrsumo1  27483  pntpbnd1a  27503  pntpbnd2  27505  pntlemr  27520  axsegconlem10  28860  crctcshwlkn0lem6  29752  pjhthlem1  31327  hst1h  32163  ballotlem2  34487  ballotlemfmpn  34493  lzenom  42765  acongrep  42976  fouriersw  46236
  Copyright terms: Public domain W3C validator