MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan2 Structured version   Visualization version   GIF version

Theorem pncan2 11378
Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
Assertion
Ref Expression
pncan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)

Proof of Theorem pncan2
StepHypRef Expression
1 addcom 11310 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
21oveq1d 7370 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴))
3 pncan 11377 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵)
42, 3eqtr3d 2770 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
54ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015   + caddc 11020  cmin 11355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357
This theorem is referenced by:  subid  11391  pnpcan  11411  pnncan  11413  pncan2d  11485  fzrev3  13497  fzrevral3  13521  fzosubel2  13632  facndiv  14202  bcnp1n  14228  lswccatn0lsw  14506  swrds1  14581  swrdccat2  14584  swrdccat3b  14654  revccat  14680  trireciplem  15776  psgnunilem2  19415  efgredleme  19663  pjthlem1  25384  uniioombllem3  25533  dyadovol  25541  dvfsumle  25973  dvfsumleOLD  25974  qaa  26278  geolim3  26294  pserdv2  26387  logtayl  26616  tanatan  26876  atans2  26888  efrlim  26926  efrlimOLD  26927  ppidif  27120  ppiub  27162  bposlem9  27250  pntrsumo1  27523  pntpbnd1a  27543  pntpbnd2  27545  pntlemr  27560  axsegconlem10  28925  crctcshwlkn0lem6  29814  pjhthlem1  31392  hst1h  32228  ballotlem2  34574  ballotlemfmpn  34580  lzenom  42927  acongrep  43137  fouriersw  46391
  Copyright terms: Public domain W3C validator