| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.) |
| Ref | Expression |
|---|---|
| pncan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom 11310 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
| 2 | 1 | oveq1d 7370 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴)) |
| 3 | pncan 11377 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵) | |
| 4 | 2, 3 | eqtr3d 2770 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| 5 | 4 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 + caddc 11020 − cmin 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 |
| This theorem is referenced by: subid 11391 pnpcan 11411 pnncan 11413 pncan2d 11485 fzrev3 13497 fzrevral3 13521 fzosubel2 13632 facndiv 14202 bcnp1n 14228 lswccatn0lsw 14506 swrds1 14581 swrdccat2 14584 swrdccat3b 14654 revccat 14680 trireciplem 15776 psgnunilem2 19415 efgredleme 19663 pjthlem1 25384 uniioombllem3 25533 dyadovol 25541 dvfsumle 25973 dvfsumleOLD 25974 qaa 26278 geolim3 26294 pserdv2 26387 logtayl 26616 tanatan 26876 atans2 26888 efrlim 26926 efrlimOLD 26927 ppidif 27120 ppiub 27162 bposlem9 27250 pntrsumo1 27523 pntpbnd1a 27543 pntpbnd2 27545 pntlemr 27560 axsegconlem10 28925 crctcshwlkn0lem6 29814 pjhthlem1 31392 hst1h 32228 ballotlem2 34574 ballotlemfmpn 34580 lzenom 42927 acongrep 43137 fouriersw 46391 |
| Copyright terms: Public domain | W3C validator |