Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan2 | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.) |
Ref | Expression |
---|---|
pncan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom 11171 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
2 | 1 | oveq1d 7282 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴)) |
3 | pncan 11237 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵) | |
4 | 2, 3 | eqtr3d 2780 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
5 | 4 | ancoms 459 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7267 ℂcc 10879 + caddc 10884 − cmin 11215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-ltxr 11024 df-sub 11217 |
This theorem is referenced by: subid 11250 pnpcan 11270 pnncan 11272 pncan2d 11344 fzrev3 13332 fzrevral3 13353 fzosubel2 13457 facndiv 14012 bcnp1n 14038 lswccatn0lsw 14306 swrds1 14389 swrdccat2 14392 swrdccat3b 14463 revccat 14489 trireciplem 15584 psgnunilem2 19113 efgredleme 19359 pjthlem1 24611 uniioombllem3 24759 dyadovol 24767 dvfsumle 25195 qaa 25493 geolim3 25509 pserdv2 25599 logtayl 25825 tanatan 26079 atans2 26091 efrlim 26129 ppidif 26322 ppiub 26362 bposlem9 26450 pntrsumo1 26723 pntpbnd1a 26743 pntpbnd2 26745 pntlemr 26760 axsegconlem10 27304 crctcshwlkn0lem6 28188 pjhthlem1 29761 hst1h 30597 ballotlem2 32463 ballotlemfmpn 32469 lzenom 40600 acongrep 40810 fouriersw 43753 |
Copyright terms: Public domain | W3C validator |