MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan2 Structured version   Visualization version   GIF version

Theorem pncan2 11543
Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
Assertion
Ref Expression
pncan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)

Proof of Theorem pncan2
StepHypRef Expression
1 addcom 11476 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
21oveq1d 7463 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴))
3 pncan 11542 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵)
42, 3eqtr3d 2782 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
54ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   + caddc 11187  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522
This theorem is referenced by:  subid  11555  pnpcan  11575  pnncan  11577  pncan2d  11649  fzrev3  13650  fzrevral3  13671  fzosubel2  13776  facndiv  14337  bcnp1n  14363  lswccatn0lsw  14639  swrds1  14714  swrdccat2  14717  swrdccat3b  14788  revccat  14814  trireciplem  15910  psgnunilem2  19537  efgredleme  19785  pjthlem1  25490  uniioombllem3  25639  dyadovol  25647  dvfsumle  26080  dvfsumleOLD  26081  qaa  26383  geolim3  26399  pserdv2  26492  logtayl  26720  tanatan  26980  atans2  26992  efrlim  27030  efrlimOLD  27031  ppidif  27224  ppiub  27266  bposlem9  27354  pntrsumo1  27627  pntpbnd1a  27647  pntpbnd2  27649  pntlemr  27664  axsegconlem10  28959  crctcshwlkn0lem6  29848  pjhthlem1  31423  hst1h  32259  ballotlem2  34453  ballotlemfmpn  34459  lzenom  42726  acongrep  42937  fouriersw  46152
  Copyright terms: Public domain W3C validator