MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan2 Structured version   Visualization version   GIF version

Theorem pncan2 11494
Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
Assertion
Ref Expression
pncan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)

Proof of Theorem pncan2
StepHypRef Expression
1 addcom 11426 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
21oveq1d 7425 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = ((𝐴 + 𝐵) − 𝐴))
3 pncan 11493 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵)
42, 3eqtr3d 2773 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
54ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7410  cc 11132   + caddc 11137  cmin 11471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473
This theorem is referenced by:  subid  11507  pnpcan  11527  pnncan  11529  pncan2d  11601  fzrev3  13612  fzrevral3  13636  fzosubel2  13746  facndiv  14311  bcnp1n  14337  lswccatn0lsw  14614  swrds1  14689  swrdccat2  14692  swrdccat3b  14763  revccat  14789  trireciplem  15883  psgnunilem2  19481  efgredleme  19729  pjthlem1  25394  uniioombllem3  25543  dyadovol  25551  dvfsumle  25983  dvfsumleOLD  25984  qaa  26288  geolim3  26304  pserdv2  26397  logtayl  26626  tanatan  26886  atans2  26898  efrlim  26936  efrlimOLD  26937  ppidif  27130  ppiub  27172  bposlem9  27260  pntrsumo1  27533  pntpbnd1a  27553  pntpbnd2  27555  pntlemr  27570  axsegconlem10  28910  crctcshwlkn0lem6  29802  pjhthlem1  31377  hst1h  32213  ballotlem2  34526  ballotlemfmpn  34532  lzenom  42760  acongrep  42971  fouriersw  46227
  Copyright terms: Public domain W3C validator