| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfcn | Structured version Visualization version GIF version | ||
| Description: One-half is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| halfcn | ⊢ (1 / 2) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12221 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 2ne0 12250 | . 2 ⊢ 2 ≠ 0 | |
| 3 | 1, 2 | reccli 11872 | 1 ⊢ (1 / 2) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 / cdiv 11795 2c2 12201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 |
| This theorem is referenced by: 1mhlfehlf 12361 halfpm6th 12364 rddif 15266 geo2sum 15798 geo2lim 15800 geoihalfsum 15807 bpoly1 15976 bpoly2 15982 bpoly3 15983 efcllem 16002 ege2le3 16015 efival 16079 flodddiv4 16344 pcoass 24940 iscmet3lem3 25206 mbfi1fseqlem6 25637 dvmptre 25889 aaliou3lem2 26267 aaliou3lem3 26268 sincos4thpi 26438 cxpsqrt 26628 dvsqrt 26667 dvcnsqrt 26669 resqrtcn 26675 ang180lem3 26737 heron 26764 efiatan 26838 efiatan2 26843 gausslemma2dlem1a 27292 ipdirilem 30791 mayete3i 31690 opsqrlem6 32107 dnibndlem3 36453 dnibndlem6 36456 cntotbnd 37775 stirlinglem1 46056 dirkerper 46078 dirkertrigeqlem3 46082 dirkeritg 46084 dirkercncflem2 46086 fourierdlem18 46107 fourierdlem57 46145 fourierdlem58 46146 fourierdlem62 46150 fourierdlem103 46191 fourierdlem104 46192 0nodd 48155 |
| Copyright terms: Public domain | W3C validator |