MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfcn Structured version   Visualization version   GIF version

Theorem halfcn 12508
Description: One-half is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
halfcn (1 / 2) ∈ ℂ

Proof of Theorem halfcn
StepHypRef Expression
1 2cn 12368 . 2 2 ∈ ℂ
2 2ne0 12397 . 2 2 ≠ 0
31, 2reccli 12024 1 (1 / 2) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7448  cc 11182  1c1 11185   / cdiv 11947  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356
This theorem is referenced by:  halfpm6th  12514  rddif  15389  geo2sum  15921  geo2lim  15923  geoihalfsum  15930  bpoly1  16099  bpoly2  16105  bpoly3  16106  efcllem  16125  ege2le3  16138  efival  16200  flodddiv4  16461  pcoass  25076  iscmet3lem3  25343  mbfi1fseqlem6  25775  dvmptre  26027  aaliou3lem2  26403  aaliou3lem3  26404  sincos4thpi  26573  cxpsqrt  26763  dvsqrt  26802  dvcnsqrt  26804  resqrtcn  26810  ang180lem3  26872  heron  26899  efiatan  26973  efiatan2  26978  gausslemma2dlem1a  27427  ipdirilem  30861  mayete3i  31760  opsqrlem6  32177  dnibndlem3  36446  dnibndlem6  36449  cntotbnd  37756  stirlinglem1  45995  dirkerper  46017  dirkertrigeqlem3  46021  dirkeritg  46023  dirkercncflem2  46025  fourierdlem18  46046  fourierdlem57  46084  fourierdlem58  46085  fourierdlem62  46089  fourierdlem103  46130  fourierdlem104  46131  0nodd  47893
  Copyright terms: Public domain W3C validator