| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfcn | Structured version Visualization version GIF version | ||
| Description: One-half is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| halfcn | ⊢ (1 / 2) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12315 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 2ne0 12344 | . 2 ⊢ 2 ≠ 0 | |
| 3 | 1, 2 | reccli 11971 | 1 ⊢ (1 / 2) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 / cdiv 11894 2c2 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 |
| This theorem is referenced by: 1mhlfehlf 12460 halfpm6th 12463 rddif 15359 geo2sum 15889 geo2lim 15891 geoihalfsum 15898 bpoly1 16067 bpoly2 16073 bpoly3 16074 efcllem 16093 ege2le3 16106 efival 16170 flodddiv4 16434 pcoass 24975 iscmet3lem3 25242 mbfi1fseqlem6 25673 dvmptre 25925 aaliou3lem2 26303 aaliou3lem3 26304 sincos4thpi 26474 cxpsqrt 26664 dvsqrt 26703 dvcnsqrt 26705 resqrtcn 26711 ang180lem3 26773 heron 26800 efiatan 26874 efiatan2 26879 gausslemma2dlem1a 27328 ipdirilem 30810 mayete3i 31709 opsqrlem6 32126 dnibndlem3 36498 dnibndlem6 36501 cntotbnd 37820 stirlinglem1 46103 dirkerper 46125 dirkertrigeqlem3 46129 dirkeritg 46131 dirkercncflem2 46133 fourierdlem18 46154 fourierdlem57 46192 fourierdlem58 46193 fourierdlem62 46197 fourierdlem103 46238 fourierdlem104 46239 0nodd 48145 |
| Copyright terms: Public domain | W3C validator |