MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfcn Structured version   Visualization version   GIF version

Theorem halfcn 12428
Description: One-half is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
halfcn (1 / 2) ∈ ℂ

Proof of Theorem halfcn
StepHypRef Expression
1 2cn 12288 . 2 2 ∈ ℂ
2 2ne0 12317 . 2 2 ≠ 0
31, 2reccli 11945 1 (1 / 2) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  (class class class)co 7404  cc 11107  1c1 11110   / cdiv 11872  2c2 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-2 12276
This theorem is referenced by:  halfpm6th  12434  rddif  15291  geo2sum  15823  geo2lim  15825  geoihalfsum  15832  bpoly1  15999  bpoly2  16005  bpoly3  16006  efcllem  16025  ege2le3  16038  efival  16100  flodddiv4  16361  pcoass  24902  iscmet3lem3  25169  mbfi1fseqlem6  25601  dvmptre  25852  aaliou3lem2  26229  aaliou3lem3  26230  sincos4thpi  26399  cxpsqrt  26588  dvsqrt  26627  dvcnsqrt  26629  resqrtcn  26635  ang180lem3  26694  heron  26721  efiatan  26795  efiatan2  26800  gausslemma2dlem1a  27249  ipdirilem  30587  mayete3i  31486  opsqrlem6  31903  dnibndlem3  35864  dnibndlem6  35867  cntotbnd  37175  stirlinglem1  45343  dirkerper  45365  dirkertrigeqlem3  45369  dirkeritg  45371  dirkercncflem2  45373  fourierdlem18  45394  fourierdlem57  45432  fourierdlem58  45433  fourierdlem62  45437  fourierdlem103  45478  fourierdlem104  45479  0nodd  47101
  Copyright terms: Public domain W3C validator