MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfleoddlt Structured version   Visualization version   GIF version

Theorem halfleoddlt 15702
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))

Proof of Theorem halfleoddlt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 15681 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 0xr 10677 . . . . . . . . . . . 12 0 ∈ ℝ*
3 1xr 10689 . . . . . . . . . . . 12 1 ∈ ℝ*
4 halfre 11839 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
54rexri 10688 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ*
62, 3, 53pm3.2i 1336 . . . . . . . . . . 11 (0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
7 halfgt0 11841 . . . . . . . . . . . 12 0 < (1 / 2)
8 halflt1 11843 . . . . . . . . . . . 12 (1 / 2) < 1
97, 8pm3.2i 474 . . . . . . . . . . 11 (0 < (1 / 2) ∧ (1 / 2) < 1)
10 elioo3g 12755 . . . . . . . . . . 11 ((1 / 2) ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (0 < (1 / 2) ∧ (1 / 2) < 1)))
116, 9, 10mpbir2an 710 . . . . . . . . . 10 (1 / 2) ∈ (0(,)1)
12 zltaddlt1le 12883 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (1 / 2) ∈ (0(,)1)) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
1311, 12mp3an3 1447 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
14 zcn 11974 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
1514adantr 484 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℂ)
16 1cnd 10625 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
17 2cnne0 11835 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
1817a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
19 muldivdir 11322 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2015, 16, 18, 19syl3anc 1368 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2120breq1d 5052 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑛 + (1 / 2)) < 𝑀))
2220breq1d 5052 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
2313, 21, 223bitr4rd 315 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀))
24 oveq1 7147 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
2524breq1d 5052 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑁 / 2) ≤ 𝑀))
2624breq1d 5052 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑁 / 2) < 𝑀))
2725, 26bibi12d 349 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀) ↔ ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2823, 27syl5ibcom 248 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2928ex 416 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3029adantl 485 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3130com23 86 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3231rexlimdva 3270 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
331, 32sylbid 243 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
34333imp 1108 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wrex 3131   class class class wbr 5042  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  2c2 11680  cz 11969  (,)cioo 12726  cdvds 15598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-rp 12378  df-ioo 12730  df-dvds 15599
This theorem is referenced by:  gausslemma2dlem1a  25947
  Copyright terms: Public domain W3C validator