| Step | Hyp | Ref
| Expression |
| 1 | | odd2np1 16365 |
. . 3
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) = 𝑁)) |
| 2 | | 0xr 11287 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
| 3 | | 1xr 11299 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ* |
| 4 | | halfre 12459 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ |
| 5 | 4 | rexri 11298 |
. . . . . . . . . . . 12
⊢ (1 / 2)
∈ ℝ* |
| 6 | 2, 3, 5 | 3pm3.2i 1340 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈
ℝ*) |
| 7 | | halfgt0 12461 |
. . . . . . . . . . . 12
⊢ 0 < (1
/ 2) |
| 8 | | halflt1 12463 |
. . . . . . . . . . . 12
⊢ (1 / 2)
< 1 |
| 9 | 7, 8 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (0 <
(1 / 2) ∧ (1 / 2) < 1) |
| 10 | | elioo3g 13396 |
. . . . . . . . . . 11
⊢ ((1 / 2)
∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈
ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (0 < (1
/ 2) ∧ (1 / 2) < 1))) |
| 11 | 6, 9, 10 | mpbir2an 711 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ (0(,)1) |
| 12 | | zltaddlt1le 13527 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (1 / 2)
∈ (0(,)1)) → ((𝑛
+ (1 / 2)) < 𝑀 ↔
(𝑛 + (1 / 2)) ≤ 𝑀)) |
| 13 | 11, 12 | mp3an3 1452 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀)) |
| 14 | | zcn 12598 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈
ℂ) |
| 16 | | 1cnd 11235 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 1 ∈
ℂ) |
| 17 | | 2cnne0 12455 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 18 | 17 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2
∈ ℂ ∧ 2 ≠ 0)) |
| 19 | | muldivdir 11939 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2))) |
| 20 | 15, 16, 18, 19 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) / 2) =
(𝑛 + (1 /
2))) |
| 21 | 20 | breq1d 5134 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) / 2) <
𝑀 ↔ (𝑛 + (1 / 2)) < 𝑀)) |
| 22 | 20 | breq1d 5134 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) / 2) ≤
𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀)) |
| 23 | 13, 21, 22 | 3bitr4rd 312 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) / 2) ≤
𝑀 ↔ (((2 ·
𝑛) + 1) / 2) < 𝑀)) |
| 24 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2)) |
| 25 | 24 | breq1d 5134 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑁 / 2) ≤ 𝑀)) |
| 26 | 24 | breq1d 5134 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑁 / 2) < 𝑀)) |
| 27 | 25, 26 | bibi12d 345 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀) ↔ ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))) |
| 28 | 23, 27 | syl5ibcom 245 |
. . . . . . 7
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))) |
| 29 | 28 | ex 412 |
. . . . . 6
⊢ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))) |
| 30 | 29 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))) |
| 31 | 30 | com23 86 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))) |
| 32 | 31 | rexlimdva 3142 |
. . 3
⊢ (𝑁 ∈ ℤ →
(∃𝑛 ∈ ℤ
((2 · 𝑛) + 1) =
𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))) |
| 33 | 1, 32 | sylbid 240 |
. 2
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))) |
| 34 | 33 | 3imp 1110 |
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)) |