MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfleoddlt Structured version   Visualization version   GIF version

Theorem halfleoddlt 16291
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))

Proof of Theorem halfleoddlt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 16270 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 0xr 11181 . . . . . . . . . . . 12 0 ∈ ℝ*
3 1xr 11193 . . . . . . . . . . . 12 1 ∈ ℝ*
4 halfre 12355 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
54rexri 11192 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ*
62, 3, 53pm3.2i 1340 . . . . . . . . . . 11 (0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
7 halfgt0 12357 . . . . . . . . . . . 12 0 < (1 / 2)
8 halflt1 12359 . . . . . . . . . . . 12 (1 / 2) < 1
97, 8pm3.2i 470 . . . . . . . . . . 11 (0 < (1 / 2) ∧ (1 / 2) < 1)
10 elioo3g 13295 . . . . . . . . . . 11 ((1 / 2) ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (0 < (1 / 2) ∧ (1 / 2) < 1)))
116, 9, 10mpbir2an 711 . . . . . . . . . 10 (1 / 2) ∈ (0(,)1)
12 zltaddlt1le 13426 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (1 / 2) ∈ (0(,)1)) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
1311, 12mp3an3 1452 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
14 zcn 12494 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
1514adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℂ)
16 1cnd 11129 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
17 2cnne0 12351 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
1817a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
19 muldivdir 11835 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2015, 16, 18, 19syl3anc 1373 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2120breq1d 5105 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑛 + (1 / 2)) < 𝑀))
2220breq1d 5105 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
2313, 21, 223bitr4rd 312 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀))
24 oveq1 7360 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
2524breq1d 5105 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑁 / 2) ≤ 𝑀))
2624breq1d 5105 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑁 / 2) < 𝑀))
2725, 26bibi12d 345 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀) ↔ ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2823, 27syl5ibcom 245 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2928ex 412 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3029adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3130com23 86 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3231rexlimdva 3130 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
331, 32sylbid 240 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
34333imp 1110 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169   / cdiv 11795  2c2 12201  cz 12489  (,)cioo 13266  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-rp 12912  df-ioo 13270  df-dvds 16182
This theorem is referenced by:  gausslemma2dlem1a  27292
  Copyright terms: Public domain W3C validator