MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfleoddlt Structured version   Visualization version   GIF version

Theorem halfleoddlt 16308
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))

Proof of Theorem halfleoddlt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 16287 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 0xr 11197 . . . . . . . . . . . 12 0 ∈ ℝ*
3 1xr 11209 . . . . . . . . . . . 12 1 ∈ ℝ*
4 halfre 12371 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
54rexri 11208 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ*
62, 3, 53pm3.2i 1340 . . . . . . . . . . 11 (0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
7 halfgt0 12373 . . . . . . . . . . . 12 0 < (1 / 2)
8 halflt1 12375 . . . . . . . . . . . 12 (1 / 2) < 1
97, 8pm3.2i 470 . . . . . . . . . . 11 (0 < (1 / 2) ∧ (1 / 2) < 1)
10 elioo3g 13311 . . . . . . . . . . 11 ((1 / 2) ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (0 < (1 / 2) ∧ (1 / 2) < 1)))
116, 9, 10mpbir2an 711 . . . . . . . . . 10 (1 / 2) ∈ (0(,)1)
12 zltaddlt1le 13442 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (1 / 2) ∈ (0(,)1)) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
1311, 12mp3an3 1452 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
14 zcn 12510 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
1514adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℂ)
16 1cnd 11145 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
17 2cnne0 12367 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
1817a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
19 muldivdir 11851 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2015, 16, 18, 19syl3anc 1373 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2120breq1d 5112 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑛 + (1 / 2)) < 𝑀))
2220breq1d 5112 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
2313, 21, 223bitr4rd 312 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀))
24 oveq1 7376 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
2524breq1d 5112 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑁 / 2) ≤ 𝑀))
2624breq1d 5112 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑁 / 2) < 𝑀))
2725, 26bibi12d 345 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀) ↔ ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2823, 27syl5ibcom 245 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
2928ex 412 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3029adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3130com23 86 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3231rexlimdva 3134 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
331, 32sylbid 240 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
34333imp 1110 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  cz 12505  (,)cioo 13282  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-rp 12928  df-ioo 13286  df-dvds 16199
This theorem is referenced by:  gausslemma2dlem1a  27252
  Copyright terms: Public domain W3C validator