![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashgt1 | Structured version Visualization version GIF version |
Description: Restate "set contains at least two elements" in terms of elementhood. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
Ref | Expression |
---|---|
hashgt1 | ⢠(š“ ā š ā (¬ š“ ā (ā”⯠ā {0, 1}) ā 1 < (āÆāš“))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashf 14301 | . . . . 5 ⢠āÆ:Vā¶(ā0 āŖ {+ā}) | |
2 | ffn 6710 | . . . . 5 ⢠(āÆ:Vā¶(ā0 āŖ {+ā}) ā ⯠Fn V) | |
3 | elpreima 7052 | . . . . 5 ⢠(⯠Fn V ā (š“ ā (ā”⯠ā {0, 1}) ā (š“ ā V ā§ (āÆāš“) ā {0, 1}))) | |
4 | 1, 2, 3 | mp2b 10 | . . . 4 ⢠(š“ ā (ā”⯠ā {0, 1}) ā (š“ ā V ā§ (āÆāš“) ā {0, 1})) |
5 | elex 3487 | . . . . 5 ⢠(š“ ā š ā š“ ā V) | |
6 | 5 | biantrurd 532 | . . . 4 ⢠(š“ ā š ā ((āÆāš“) ā {0, 1} ā (š“ ā V ā§ (āÆāš“) ā {0, 1}))) |
7 | 4, 6 | bitr4id 290 | . . 3 ⢠(š“ ā š ā (š“ ā (ā”⯠ā {0, 1}) ā (āÆāš“) ā {0, 1})) |
8 | 7 | notbid 318 | . 2 ⢠(š“ ā š ā (¬ š“ ā (ā”⯠ā {0, 1}) ā ¬ (āÆāš“) ā {0, 1})) |
9 | hashxnn0 14302 | . . 3 ⢠(š“ ā š ā (āÆāš“) ā ā0*) | |
10 | xnn01gt 32488 | . . 3 ⢠((āÆāš“) ā ā0* ā (¬ (āÆāš“) ā {0, 1} ā 1 < (āÆāš“))) | |
11 | 9, 10 | syl 17 | . 2 ⢠(š“ ā š ā (¬ (āÆāš“) ā {0, 1} ā 1 < (āÆāš“))) |
12 | 8, 11 | bitrd 279 | 1 ⢠(š“ ā š ā (¬ š“ ā (ā”⯠ā {0, 1}) ā 1 < (āÆāš“))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ā wi 4 ā wb 205 ā§ wa 395 ā wcel 2098 Vcvv 3468 āŖ cun 3941 {csn 4623 {cpr 4625 class class class wbr 5141 ā”ccnv 5668 ā cima 5672 Fn wfn 6531 ā¶wf 6532 ācfv 6536 0cc0 11109 1c1 11110 +ācpnf 11246 < clt 11249 ā0cn0 12473 ā0*cxnn0 12545 āÆchash 14293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-xnn0 12546 df-z 12560 df-uz 12824 df-hash 14294 |
This theorem is referenced by: tocyccntz 32807 |
Copyright terms: Public domain | W3C validator |