| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fltabcoprm.2 | . . . 4
⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | 
| 2 |  | fltabcoprm.a | . . . . 5
⊢ (𝜑 → 𝐴 ∈ ℕ) | 
| 3 |  | fltabcoprm.c | . . . . 5
⊢ (𝜑 → 𝐶 ∈ ℕ) | 
| 4 |  | coprmgcdb 16687 | . . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1)) | 
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1)) | 
| 6 | 1, 5 | mpbird 257 | . . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1)) | 
| 7 |  | simprl 770 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐴) | 
| 8 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) | 
| 9 | 8 | nnsqcld 14284 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∈ ℕ) | 
| 10 | 9 | nnzd 12642 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∈ ℤ) | 
| 11 | 2 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℕ) | 
| 12 | 11 | nnsqcld 14284 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴↑2) ∈ ℕ) | 
| 13 | 12 | nnzd 12642 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴↑2) ∈ ℤ) | 
| 14 |  | fltabcoprm.b | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℕ) | 
| 15 | 14 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℕ) | 
| 16 | 15 | nnsqcld 14284 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐵↑2) ∈ ℕ) | 
| 17 | 16 | nnzd 12642 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐵↑2) ∈ ℤ) | 
| 18 |  | dvdssqlem 16604 | . . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑖 ∥ 𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2))) | 
| 19 | 8, 11, 18 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2))) | 
| 20 | 7, 19 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐴↑2)) | 
| 21 |  | simprr 772 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐵) | 
| 22 |  | dvdssqlem 16604 | . . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑖 ∥ 𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2))) | 
| 23 | 8, 15, 22 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2))) | 
| 24 | 21, 23 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐵↑2)) | 
| 25 | 10, 13, 17, 20, 24 | dvds2addd 16330 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ ((𝐴↑2) + (𝐵↑2))) | 
| 26 |  | fltabcoprm.3 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | 
| 27 | 26 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | 
| 28 | 25, 27 | breqtrd 5168 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐶↑2)) | 
| 29 | 3 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐶 ∈ ℕ) | 
| 30 |  | dvdssqlem 16604 | . . . . . . . . 9
⊢ ((𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝑖 ∥ 𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2))) | 
| 31 | 8, 29, 30 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2))) | 
| 32 | 28, 31 | mpbird 257 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐶) | 
| 33 | 7, 32 | jca 511 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶)) | 
| 34 | 33 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶))) | 
| 35 | 34 | imim1d 82 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) | 
| 36 | 35 | ralimdva 3166 | . . 3
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) | 
| 37 | 6, 36 | mpd 15 | . 2
⊢ (𝜑 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | 
| 38 |  | coprmgcdb 16687 | . . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | 
| 39 | 2, 14, 38 | syl2anc 584 | . 2
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | 
| 40 | 37, 39 | mpbid 232 | 1
⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |