Step | Hyp | Ref
| Expression |
1 | | fltabcoprm.2 |
. . . 4
⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
2 | | fltabcoprm.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℕ) |
3 | | fltabcoprm.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℕ) |
4 | | coprmgcdb 16282 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1)) |
5 | 2, 3, 4 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1)) |
6 | 1, 5 | mpbird 256 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1)) |
7 | | simprl 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐴) |
8 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
9 | 8 | nnsqcld 13887 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∈ ℕ) |
10 | 9 | nnzd 12354 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∈ ℤ) |
11 | 2 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℕ) |
12 | 11 | nnsqcld 13887 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴↑2) ∈ ℕ) |
13 | 12 | nnzd 12354 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴↑2) ∈ ℤ) |
14 | | fltabcoprm.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℕ) |
15 | 14 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℕ) |
16 | 15 | nnsqcld 13887 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐵↑2) ∈ ℕ) |
17 | 16 | nnzd 12354 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐵↑2) ∈ ℤ) |
18 | | dvdssqlem 16199 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑖 ∥ 𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2))) |
19 | 8, 11, 18 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2))) |
20 | 7, 19 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐴↑2)) |
21 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐵) |
22 | | dvdssqlem 16199 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑖 ∥ 𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2))) |
23 | 8, 15, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2))) |
24 | 21, 23 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐵↑2)) |
25 | 10, 13, 17, 20, 24 | dvds2addd 15929 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ ((𝐴↑2) + (𝐵↑2))) |
26 | | fltabcoprm.3 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
27 | 26 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
28 | 25, 27 | breqtrd 5096 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖↑2) ∥ (𝐶↑2)) |
29 | 3 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐶 ∈ ℕ) |
30 | | dvdssqlem 16199 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝑖 ∥ 𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2))) |
31 | 8, 29, 30 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2))) |
32 | 28, 31 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐶) |
33 | 7, 32 | jca 511 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶)) |
34 | 33 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶))) |
35 | 34 | imim1d 82 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
36 | 35 | ralimdva 3102 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
37 | 6, 36 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) |
38 | | coprmgcdb 16282 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |
39 | 2, 14, 38 | syl2anc 583 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |
40 | 37, 39 | mpbid 231 |
1
⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |