Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltabcoprm Structured version   Visualization version   GIF version

Theorem fltabcoprm 40966
Description: A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 40964. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprm.a (𝜑𝐴 ∈ ℕ)
fltabcoprm.b (𝜑𝐵 ∈ ℕ)
fltabcoprm.c (𝜑𝐶 ∈ ℕ)
fltabcoprm.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
fltabcoprm.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
fltabcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem fltabcoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltabcoprm.2 . . . 4 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 fltabcoprm.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprm.c . . . . 5 (𝜑𝐶 ∈ ℕ)
4 coprmgcdb 16525 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
61, 5mpbird 256 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
7 simprl 769 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐴)
8 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
98nnsqcld 14147 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℕ)
109nnzd 12526 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℤ)
112ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℕ)
1211nnsqcld 14147 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℕ)
1312nnzd 12526 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℤ)
14 fltabcoprm.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
1514ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℕ)
1615nnsqcld 14147 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℕ)
1716nnzd 12526 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℤ)
18 dvdssqlem 16442 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
198, 11, 18syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
207, 19mpbid 231 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐴↑2))
21 simprr 771 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
22 dvdssqlem 16442 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
238, 15, 22syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
2421, 23mpbid 231 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐵↑2))
2510, 13, 17, 20, 24dvds2addd 16174 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
26 fltabcoprm.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2726ad2antrr 724 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2825, 27breqtrd 5131 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐶↑2))
293ad2antrr 724 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐶 ∈ ℕ)
30 dvdssqlem 16442 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
318, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
3228, 31mpbird 256 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐶)
337, 32jca 512 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐶))
3433ex 413 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → (𝑖𝐴𝑖𝐶)))
3534imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
3635ralimdva 3164 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
376, 36mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
38 coprmgcdb 16525 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
392, 14, 38syl2anc 584 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
4037, 39mpbid 231 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  (class class class)co 7357  1c1 11052   + caddc 11054  cn 12153  2c2 12208  cexp 13967  cdvds 16136   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375
This theorem is referenced by:  flt4lem1  40970  flt4lem3  40972  flt4lem5c  40978  flt4lem5d  40979  flt4lem5e  40980
  Copyright terms: Public domain W3C validator