Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltabcoprm Structured version   Visualization version   GIF version

Theorem fltabcoprm 42674
Description: A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 42672. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprm.a (𝜑𝐴 ∈ ℕ)
fltabcoprm.b (𝜑𝐵 ∈ ℕ)
fltabcoprm.c (𝜑𝐶 ∈ ℕ)
fltabcoprm.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
fltabcoprm.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
fltabcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem fltabcoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltabcoprm.2 . . . 4 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 fltabcoprm.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprm.c . . . . 5 (𝜑𝐶 ∈ ℕ)
4 coprmgcdb 16557 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
61, 5mpbird 257 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
7 simprl 770 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐴)
8 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
98nnsqcld 14148 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℕ)
109nnzd 12492 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℤ)
112ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℕ)
1211nnsqcld 14148 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℕ)
1312nnzd 12492 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℤ)
14 fltabcoprm.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
1514ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℕ)
1615nnsqcld 14148 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℕ)
1716nnzd 12492 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℤ)
18 dvdssqlem 16474 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
198, 11, 18syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
207, 19mpbid 232 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐴↑2))
21 simprr 772 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
22 dvdssqlem 16474 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
238, 15, 22syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
2421, 23mpbid 232 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐵↑2))
2510, 13, 17, 20, 24dvds2addd 16200 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
26 fltabcoprm.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2726ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2825, 27breqtrd 5117 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐶↑2))
293ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐶 ∈ ℕ)
30 dvdssqlem 16474 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
318, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
3228, 31mpbird 257 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐶)
337, 32jca 511 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐶))
3433ex 412 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → (𝑖𝐴𝑖𝐶)))
3534imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
3635ralimdva 3144 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
376, 36mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
38 coprmgcdb 16557 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
392, 14, 38syl2anc 584 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
4037, 39mpbid 232 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  (class class class)co 7346  1c1 11004   + caddc 11006  cn 12122  2c2 12177  cexp 13965  cdvds 16160   gcd cgcd 16402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403
This theorem is referenced by:  flt4lem1  42678  flt4lem3  42680  flt4lem5c  42686  flt4lem5d  42687  flt4lem5e  42688
  Copyright terms: Public domain W3C validator