Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltabcoprm Structured version   Visualization version   GIF version

Theorem fltabcoprm 41380
Description: A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 41378. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
fltabcoprm.a (𝜑𝐴 ∈ ℕ)
fltabcoprm.b (𝜑𝐵 ∈ ℕ)
fltabcoprm.c (𝜑𝐶 ∈ ℕ)
fltabcoprm.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
fltabcoprm.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
fltabcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem fltabcoprm
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fltabcoprm.2 . . . 4 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 fltabcoprm.a . . . . 5 (𝜑𝐴 ∈ ℕ)
3 fltabcoprm.c . . . . 5 (𝜑𝐶 ∈ ℕ)
4 coprmgcdb 16582 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) ↔ (𝐴 gcd 𝐶) = 1))
61, 5mpbird 256 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1))
7 simprl 769 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐴)
8 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
98nnsqcld 14203 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℕ)
109nnzd 12581 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∈ ℤ)
112ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℕ)
1211nnsqcld 14203 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℕ)
1312nnzd 12581 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴↑2) ∈ ℤ)
14 fltabcoprm.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
1514ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℕ)
1615nnsqcld 14203 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℕ)
1716nnzd 12581 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝐵↑2) ∈ ℤ)
18 dvdssqlem 16499 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
198, 11, 18syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴 ↔ (𝑖↑2) ∥ (𝐴↑2)))
207, 19mpbid 231 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐴↑2))
21 simprr 771 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
22 dvdssqlem 16499 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
238, 15, 22syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐵 ↔ (𝑖↑2) ∥ (𝐵↑2)))
2421, 23mpbid 231 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐵↑2))
2510, 13, 17, 20, 24dvds2addd 16231 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
26 fltabcoprm.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2726ad2antrr 724 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2825, 27breqtrd 5173 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖↑2) ∥ (𝐶↑2))
293ad2antrr 724 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝐶 ∈ ℕ)
30 dvdssqlem 16499 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
318, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐶 ↔ (𝑖↑2) ∥ (𝐶↑2)))
3228, 31mpbird 256 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐶)
337, 32jca 512 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐶))
3433ex 413 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → (𝑖𝐴𝑖𝐶)))
3534imim1d 82 . . . 4 ((𝜑𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
3635ralimdva 3167 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐶) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
376, 36mpd 15 . 2 (𝜑 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
38 coprmgcdb 16582 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
392, 14, 38syl2anc 584 . 2 (𝜑 → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
4037, 39mpbid 231 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061   class class class wbr 5147  (class class class)co 7405  1c1 11107   + caddc 11109  cn 12208  2c2 12263  cexp 14023  cdvds 16193   gcd cgcd 16431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432
This theorem is referenced by:  flt4lem1  41384  flt4lem3  41386  flt4lem5c  41392  flt4lem5d  41393  flt4lem5e  41394
  Copyright terms: Public domain W3C validator