MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem1 16555
Description: Lemma for lcmfdvds 16560 and lcmfunsnlem 16559 (Induction step part 1). (Contributed by AV, 25-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧   𝑘,𝑚

Proof of Theorem lcmfunsnlem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfra1 3257 . . . 4 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfv 1915 . . . 4 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1900 . . 3 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1900 . 2 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 breq2 5099 . . . . . . . 8 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
76ralbidv 3156 . . . . . . 7 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
8 breq2 5099 . . . . . . 7 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
97, 8imbi12d 344 . . . . . 6 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
109cbvralvw 3211 . . . . 5 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
11 breq2 5099 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
1211ralbidv 3156 . . . . . . . . 9 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
13 breq2 5099 . . . . . . . . 9 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
1412, 13imbi12d 344 . . . . . . . 8 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1514rspcv 3569 . . . . . . 7 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1615adantl 481 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
17 sneq 4587 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛} = {𝑧})
1817uneq2d 4117 . . . . . . . . . . . 12 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
1918fveq2d 6835 . . . . . . . . . . 11 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
20 oveq2 7363 . . . . . . . . . . 11 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
2119, 20eqeq12d 2749 . . . . . . . . . 10 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2221rspcv 3569 . . . . . . . . 9 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
23223ad2ant1 1133 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2423adantr 480 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
25 simpr 484 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
26 lcmfcl 16546 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
2726nn0zd 12504 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
28273adant1 1130 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2928adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
30 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑧 ∈ ℤ)
3125, 29, 303jca 1128 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3231adantr 480 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3332adantr 480 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
34 ssun1 4127 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 ssralv 3999 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3634, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3736imim1d 82 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
3837imp31 417 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (lcm𝑦) ∥ 𝑘)
39 snidg 4614 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → 𝑧 ∈ {𝑧})
4039olcd 874 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (𝑧𝑦𝑧 ∈ {𝑧}))
41 elun 4102 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
4240, 41sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ (𝑦 ∪ {𝑧}))
43 breq1 5098 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → (𝑚𝑘𝑧𝑘))
4443rspcv 3569 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4542, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
46453ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4746adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4847adantr 480 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4948imp 406 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → 𝑧𝑘)
5038, 49jca 511 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
51 lcmdvds 16526 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5233, 50, 51sylc 65 . . . . . . . . . . 11 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
53 breq1 5098 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5452, 53syl5ibrcom 247 . . . . . . . . . 10 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
5554ex 412 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5655com23 86 . . . . . . . 8 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5756ex 412 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5824, 57syl5d 73 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5916, 58syld 47 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6010, 59biimtrid 242 . . . 4 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6160impd 410 . . 3 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
6261impancom 451 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
635, 62ralrimi 3231 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cun 3896  wss 3898  {csn 4577   class class class wbr 5095  cfv 6489  (class class class)co 7355  Fincfn 8879  cz 12479  cdvds 16170   lcm clcm 16506  lcmclcmf 16507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-prod 15818  df-dvds 16171  df-gcd 16413  df-lcm 16508  df-lcmf 16509
This theorem is referenced by:  lcmfunsnlem  16559
  Copyright terms: Public domain W3C validator