MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem1 16684
Description: Lemma for lcmfdvds 16689 and lcmfunsnlem 16688 (Induction step part 1). (Contributed by AV, 25-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧   𝑘,𝑚

Proof of Theorem lcmfunsnlem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . 3 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfra1 3290 . . . 4 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfv 1913 . . . 4 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1898 . . 3 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1898 . 2 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 breq2 5170 . . . . . . . 8 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
76ralbidv 3184 . . . . . . 7 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
8 breq2 5170 . . . . . . 7 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
97, 8imbi12d 344 . . . . . 6 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
109cbvralvw 3243 . . . . 5 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
11 breq2 5170 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
1211ralbidv 3184 . . . . . . . . 9 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
13 breq2 5170 . . . . . . . . 9 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
1412, 13imbi12d 344 . . . . . . . 8 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1514rspcv 3631 . . . . . . 7 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1615adantl 481 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
17 sneq 4658 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛} = {𝑧})
1817uneq2d 4191 . . . . . . . . . . . 12 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
1918fveq2d 6924 . . . . . . . . . . 11 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
20 oveq2 7456 . . . . . . . . . . 11 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
2119, 20eqeq12d 2756 . . . . . . . . . 10 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2221rspcv 3631 . . . . . . . . 9 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
23223ad2ant1 1133 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2423adantr 480 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
25 simpr 484 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
26 lcmfcl 16675 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
2726nn0zd 12665 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
28273adant1 1130 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2928adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
30 simpl1 1191 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑧 ∈ ℤ)
3125, 29, 303jca 1128 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3231adantr 480 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3332adantr 480 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
34 ssun1 4201 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 ssralv 4077 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3634, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3736imim1d 82 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
3837imp31 417 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (lcm𝑦) ∥ 𝑘)
39 snidg 4682 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → 𝑧 ∈ {𝑧})
4039olcd 873 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (𝑧𝑦𝑧 ∈ {𝑧}))
41 elun 4176 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
4240, 41sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ (𝑦 ∪ {𝑧}))
43 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → (𝑚𝑘𝑧𝑘))
4443rspcv 3631 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4542, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
46453ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4746adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4847adantr 480 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4948imp 406 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → 𝑧𝑘)
5038, 49jca 511 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
51 lcmdvds 16655 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5233, 50, 51sylc 65 . . . . . . . . . . 11 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
53 breq1 5169 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5452, 53syl5ibrcom 247 . . . . . . . . . 10 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
5554ex 412 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5655com23 86 . . . . . . . 8 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5756ex 412 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5824, 57syl5d 73 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5916, 58syld 47 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6010, 59biimtrid 242 . . . 4 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6160impd 410 . . 3 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
6261impancom 451 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
635, 62ralrimi 3263 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cz 12639  cdvds 16302   lcm clcm 16635  lcmclcmf 16636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-dvds 16303  df-gcd 16541  df-lcm 16637  df-lcmf 16638
This theorem is referenced by:  lcmfunsnlem  16688
  Copyright terms: Public domain W3C validator