Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5 Structured version   Visualization version   GIF version

Theorem flt4lem5 42660
Description: In the context of the lemmas of pythagtrip 16872, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
flt4lem5.2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
flt4lem5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)

Proof of Theorem flt4lem5
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1202 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1)
2 simp11 1204 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
3 simp12 1205 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
4 coprmgcdb 16686 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 584 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simplr 769 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℕ)
87nnzd 12640 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℤ)
9 flt4lem5.1 . . . . . . . . . . . . 13 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
109pythagtriplem11 16863 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ)
1110ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℕ)
1211nnsqcld 14283 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℕ)
1312nnzd 12640 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℤ)
14 flt4lem5.2 . . . . . . . . . . . . 13 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
1514pythagtriplem13 16865 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ)
1615ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℕ)
1716nnsqcld 14283 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℕ)
1817nnzd 12640 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℤ)
19 simprl 771 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑀)
2011nnzd 12640 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℤ)
21 2nn 12339 . . . . . . . . . . . 12 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℕ)
23 dvdsexp2im 16364 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
248, 20, 22, 23syl3anc 1373 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
2519, 24mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀↑2))
26 simprr 773 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑁)
2716nnzd 12640 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℤ)
28 dvdsexp2im 16364 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
298, 27, 22, 28syl3anc 1373 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
3026, 29mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑁↑2))
318, 13, 18, 25, 30dvds2subd 16330 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ ((𝑀↑2) − (𝑁↑2)))
329, 14pythagtriplem15 16867 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3332ad2antrr 726 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3431, 33breqtrrd 5171 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐴)
35 2z 12649 . . . . . . . . . 10 2 ∈ ℤ
3635a1i 11 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℤ)
3711, 16nnmulcld 12319 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℕ)
3837nnzd 12640 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℤ)
398, 20, 27, 26dvdsmultr2d 16336 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀 · 𝑁))
408, 36, 38, 39dvdsmultr2d 16336 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (2 · (𝑀 · 𝑁)))
419, 14pythagtriplem16 16868 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4241ad2antrr 726 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4340, 42breqtrrd 5171 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐵)
4434, 43jca 511 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝐴𝑖𝐵))
4544ex 412 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → ((𝑖𝑀𝑖𝑁) → (𝑖𝐴𝑖𝐵)))
4645imim1d 82 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
4746ralimdva 3167 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
486, 47mpd 15 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1))
49 coprmgcdb 16686 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5010, 15, 49syl2anc 584 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5148, 50mpbid 232 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cexp 14102  csqrt 15272  cdvds 16290   gcd cgcd 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709
This theorem is referenced by:  flt4lem5c  42664  flt4lem5d  42665  flt4lem5e  42666
  Copyright terms: Public domain W3C validator