| Step | Hyp | Ref
| Expression |
| 1 | | simp3l 1202 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1) |
| 2 | | simp11 1204 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ) |
| 3 | | simp12 1205 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
| 4 | | coprmgcdb 16673 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |
| 6 | 1, 5 | mpbird 257 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) |
| 7 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∈ ℕ) |
| 8 | 7 | nnzd 12620 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∈ ℤ) |
| 9 | | flt4lem5.1 |
. . . . . . . . . . . . 13
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
| 10 | 9 | pythagtriplem11 16850 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) |
| 11 | 10 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑀 ∈ ℕ) |
| 12 | 11 | nnsqcld 14267 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑀↑2) ∈ ℕ) |
| 13 | 12 | nnzd 12620 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑀↑2) ∈ ℤ) |
| 14 | | flt4lem5.2 |
. . . . . . . . . . . . 13
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
| 15 | 14 | pythagtriplem13 16852 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) |
| 16 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑁 ∈ ℕ) |
| 17 | 16 | nnsqcld 14267 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑁↑2) ∈ ℕ) |
| 18 | 17 | nnzd 12620 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑁↑2) ∈ ℤ) |
| 19 | | simprl 770 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ 𝑀) |
| 20 | 11 | nnzd 12620 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑀 ∈ ℤ) |
| 21 | | 2nn 12318 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 22 | 21 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 2 ∈ ℕ) |
| 23 | | dvdsexp2im 16351 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑖 ∥
𝑀 → 𝑖 ∥ (𝑀↑2))) |
| 24 | 8, 20, 22, 23 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑖 ∥ 𝑀 → 𝑖 ∥ (𝑀↑2))) |
| 25 | 19, 24 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ (𝑀↑2)) |
| 26 | | simprr 772 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ 𝑁) |
| 27 | 16 | nnzd 12620 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑁 ∈ ℤ) |
| 28 | | dvdsexp2im 16351 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑖 ∥
𝑁 → 𝑖 ∥ (𝑁↑2))) |
| 29 | 8, 27, 22, 28 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑖 ∥ 𝑁 → 𝑖 ∥ (𝑁↑2))) |
| 30 | 26, 29 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ (𝑁↑2)) |
| 31 | 8, 13, 18, 25, 30 | dvds2subd 16317 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ ((𝑀↑2) − (𝑁↑2))) |
| 32 | 9, 14 | pythagtriplem15 16854 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) |
| 33 | 32 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) |
| 34 | 31, 33 | breqtrrd 5152 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ 𝐴) |
| 35 | | 2z 12629 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 36 | 35 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 2 ∈ ℤ) |
| 37 | 11, 16 | nnmulcld 12298 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑀 · 𝑁) ∈ ℕ) |
| 38 | 37 | nnzd 12620 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑀 · 𝑁) ∈ ℤ) |
| 39 | 8, 20, 27, 26 | dvdsmultr2d 16323 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ (𝑀 · 𝑁)) |
| 40 | 8, 36, 38, 39 | dvdsmultr2d 16323 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ (2 · (𝑀 · 𝑁))) |
| 41 | 9, 14 | pythagtriplem16 16855 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝐵 = (2 · (𝑀 · 𝑁))) |
| 43 | 40, 42 | breqtrrd 5152 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → 𝑖 ∥ 𝐵) |
| 44 | 34, 43 | jca 511 |
. . . . . 6
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐶 ∈
ℕ) ∧ ((𝐴↑2)
+ (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁)) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) |
| 45 | 44 | ex 412 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
| 46 | 45 | imim1d 82 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → ((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → 𝑖 = 1))) |
| 47 | 46 | ralimdva 3153 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → 𝑖 = 1))) |
| 48 | 6, 47 | mpd 15 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → 𝑖 = 1)) |
| 49 | | coprmgcdb 16673 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1)) |
| 50 | 10, 15, 49 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1)) |
| 51 | 48, 50 | mpbid 232 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1) |