Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5 Structured version   Visualization version   GIF version

Theorem flt4lem5 41986
Description: In the context of the lemmas of pythagtrip 16788, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
flt4lem5.2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
flt4lem5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)

Proof of Theorem flt4lem5
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1199 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1)
2 simp11 1201 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
3 simp12 1202 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
4 coprmgcdb 16605 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 583 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simplr 768 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℕ)
87nnzd 12601 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℤ)
9 flt4lem5.1 . . . . . . . . . . . . 13 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
109pythagtriplem11 16779 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ)
1110ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℕ)
1211nnsqcld 14224 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℕ)
1312nnzd 12601 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℤ)
14 flt4lem5.2 . . . . . . . . . . . . 13 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
1514pythagtriplem13 16781 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ)
1615ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℕ)
1716nnsqcld 14224 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℕ)
1817nnzd 12601 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℤ)
19 simprl 770 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑀)
2011nnzd 12601 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℤ)
21 2nn 12301 . . . . . . . . . . . 12 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℕ)
23 dvdsexp2im 16289 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
248, 20, 22, 23syl3anc 1369 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
2519, 24mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀↑2))
26 simprr 772 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑁)
2716nnzd 12601 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℤ)
28 dvdsexp2im 16289 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
298, 27, 22, 28syl3anc 1369 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
3026, 29mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑁↑2))
318, 13, 18, 25, 30dvds2subd 16255 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ ((𝑀↑2) − (𝑁↑2)))
329, 14pythagtriplem15 16783 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3332ad2antrr 725 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3431, 33breqtrrd 5170 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐴)
35 2z 12610 . . . . . . . . . 10 2 ∈ ℤ
3635a1i 11 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℤ)
3711, 16nnmulcld 12281 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℕ)
3837nnzd 12601 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℤ)
398, 20, 27, 26dvdsmultr2d 16261 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀 · 𝑁))
408, 36, 38, 39dvdsmultr2d 16261 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (2 · (𝑀 · 𝑁)))
419, 14pythagtriplem16 16784 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4241ad2antrr 725 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4340, 42breqtrrd 5170 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐵)
4434, 43jca 511 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝐴𝑖𝐵))
4544ex 412 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → ((𝑖𝑀𝑖𝑁) → (𝑖𝐴𝑖𝐵)))
4645imim1d 82 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
4746ralimdva 3162 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
486, 47mpd 15 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1))
49 coprmgcdb 16605 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5010, 15, 49syl2anc 583 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5148, 50mpbid 231 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056   class class class wbr 5142  cfv 6542  (class class class)co 7414  1c1 11125   + caddc 11127   · cmul 11129  cmin 11460   / cdiv 11887  cn 12228  2c2 12283  cz 12574  cexp 14044  csqrt 15198  cdvds 16216   gcd cgcd 16454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-fz 13503  df-fl 13775  df-mod 13853  df-seq 13985  df-exp 14045  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-dvds 16217  df-gcd 16455  df-prm 16628
This theorem is referenced by:  flt4lem5c  41990  flt4lem5d  41991  flt4lem5e  41992
  Copyright terms: Public domain W3C validator