Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5 Structured version   Visualization version   GIF version

Theorem flt4lem5 42623
Description: In the context of the lemmas of pythagtrip 16764, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
flt4lem5.2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
flt4lem5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)

Proof of Theorem flt4lem5
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1202 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1)
2 simp11 1204 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
3 simp12 1205 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
4 coprmgcdb 16578 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
52, 3, 4syl2anc 584 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
61, 5mpbird 257 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
7 simplr 768 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℕ)
87nnzd 12516 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∈ ℤ)
9 flt4lem5.1 . . . . . . . . . . . . 13 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
109pythagtriplem11 16755 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ)
1110ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℕ)
1211nnsqcld 14169 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℕ)
1312nnzd 12516 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀↑2) ∈ ℤ)
14 flt4lem5.2 . . . . . . . . . . . . 13 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
1514pythagtriplem13 16757 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ)
1615ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℕ)
1716nnsqcld 14169 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℕ)
1817nnzd 12516 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑁↑2) ∈ ℤ)
19 simprl 770 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑀)
2011nnzd 12516 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑀 ∈ ℤ)
21 2nn 12219 . . . . . . . . . . . 12 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℕ)
23 dvdsexp2im 16256 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
248, 20, 22, 23syl3anc 1373 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑀𝑖 ∥ (𝑀↑2)))
2519, 24mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀↑2))
26 simprr 772 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝑁)
2716nnzd 12516 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑁 ∈ ℤ)
28 dvdsexp2im 16256 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
298, 27, 22, 28syl3anc 1373 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝑁𝑖 ∥ (𝑁↑2)))
3026, 29mpd 15 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑁↑2))
318, 13, 18, 25, 30dvds2subd 16222 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ ((𝑀↑2) − (𝑁↑2)))
329, 14pythagtriplem15 16759 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3332ad2antrr 726 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐴 = ((𝑀↑2) − (𝑁↑2)))
3431, 33breqtrrd 5123 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐴)
35 2z 12525 . . . . . . . . . 10 2 ∈ ℤ
3635a1i 11 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 2 ∈ ℤ)
3711, 16nnmulcld 12199 . . . . . . . . . 10 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℕ)
3837nnzd 12516 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑀 · 𝑁) ∈ ℤ)
398, 20, 27, 26dvdsmultr2d 16228 . . . . . . . . 9 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (𝑀 · 𝑁))
408, 36, 38, 39dvdsmultr2d 16228 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖 ∥ (2 · (𝑀 · 𝑁)))
419, 14pythagtriplem16 16760 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4241ad2antrr 726 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝐵 = (2 · (𝑀 · 𝑁)))
4340, 42breqtrrd 5123 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → 𝑖𝐵)
4434, 43jca 511 . . . . . 6 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) ∧ (𝑖𝑀𝑖𝑁)) → (𝑖𝐴𝑖𝐵))
4544ex 412 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → ((𝑖𝑀𝑖𝑁) → (𝑖𝐴𝑖𝐵)))
4645imim1d 82 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 𝑖 ∈ ℕ) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
4746ralimdva 3141 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1)))
486, 47mpd 15 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1))
49 coprmgcdb 16578 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5010, 15, 49syl2anc 584 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (∀𝑖 ∈ ℕ ((𝑖𝑀𝑖𝑁) → 𝑖 = 1) ↔ (𝑀 gcd 𝑁) = 1))
5148, 50mpbid 232 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  cz 12489  cexp 13986  csqrt 15158  cdvds 16181   gcd cgcd 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601
This theorem is referenced by:  flt4lem5c  42627  flt4lem5d  42628  flt4lem5e  42629
  Copyright terms: Public domain W3C validator