MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem3 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem3 27462
Description: Lemma for dchrvmasum 27488. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem3
StepHypRef Expression
1 1red 11236 . 2 (𝜑 → 1 ∈ ℝ)
2 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
4 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
5 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
6 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
7 rpvmasum.1 . . 3 1 = (0g𝐺)
8 dchrisum.b . . 3 (𝜑𝑋𝐷)
9 dchrisum.n1 . . 3 (𝜑𝑋1 )
10 dchrvmasum.f . . 3 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
11 dchrvmasum.g . . 3 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
12 dchrvmasum.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
13 dchrvmasum.t . . 3 (𝜑𝑇 ∈ ℂ)
14 dchrvmasum.1 . . 3 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
15 dchrvmasum.r . . 3 (𝜑𝑅 ∈ ℝ)
16 dchrvmasum.2 . . 3 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16dchrvmasumlem2 27461 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
18 fzfid 13991 . . 3 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
1911eleq1d 2819 . . . . . . 7 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
2010ralrimiva 3132 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
2120ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
22 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
23 elfznn 13570 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
2423nnrpd 13049 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
25 rpdivcl 13034 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
2622, 24, 25syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
2719, 21, 26rspcdva 3602 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
2813ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
2927, 28subcld 11594 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
3029abscld 15455 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
3123adantl 481 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
3230, 31nndivred 12294 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
3318, 32fsumrecl 15750 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
348ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
35 elfzelz 13541 . . . . . . 7 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
3635adantl 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
375, 2, 6, 3, 34, 36dchrzrhcl 27208 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
38 mucl 27103 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
3931, 38syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
4039zred 12697 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℝ)
4140, 31nndivred 12294 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
4241recnd 11263 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
4337, 42mulcld 11255 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
4443, 29mulcld 11255 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇)) ∈ ℂ)
4518, 44fsumcl 15749 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇)) ∈ ℂ)
4645abscld 15455 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ∈ ℝ)
4733recnd 11263 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
4847abscld 15455 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
4944abscld 15455 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ∈ ℝ)
5018, 49fsumrecl 15750 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ∈ ℝ)
5118, 44fsumabs 15817 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))))
5243abscld 15455 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ∈ ℝ)
5331nnrecred 12291 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℝ)
5429absge0d 15463 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5537, 42absmuld 15473 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) = ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))))
5637abscld 15455 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ∈ ℝ)
57 1red 11236 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
5842abscld 15455 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ∈ ℝ)
5937absge0d 15463 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑋‘(𝐿𝑑))))
6042absge0d 15463 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑑) / 𝑑)))
61 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘𝑍)
624nnnn0d 12562 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
632, 61, 3znzrhfo 21508 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
65 fof 6790 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
6766ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐿:ℤ⟶(Base‘𝑍))
6867, 36ffvelcdmd 7075 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐿𝑑) ∈ (Base‘𝑍))
695, 6, 2, 61, 34, 68dchrabs2 27225 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ≤ 1)
7040recnd 11263 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℂ)
7131nncnd 12256 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
7231nnne0d 12290 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ≠ 0)
7370, 71, 72absdivd 15474 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / (abs‘𝑑)))
7431nnrpd 13049 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
7574rprege0d 13058 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
76 absid 15315 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ℝ ∧ 0 ≤ 𝑑) → (abs‘𝑑) = 𝑑)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘𝑑) = 𝑑)
7877oveq2d 7421 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / (abs‘𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
7973, 78eqtrd 2770 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
8070abscld 15455 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ∈ ℝ)
81 mule1 27110 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → (abs‘(μ‘𝑑)) ≤ 1)
8231, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ≤ 1)
8380, 57, 74, 82lediv1dd 13109 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / 𝑑) ≤ (1 / 𝑑))
8479, 83eqbrtrd 5141 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ≤ (1 / 𝑑))
8556, 57, 58, 53, 59, 60, 69, 84lemul12ad 12184 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 · (1 / 𝑑)))
8653recnd 11263 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℂ)
8786mullidd 11253 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · (1 / 𝑑)) = (1 / 𝑑))
8885, 87breqtrd 5145 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
8955, 88eqbrtrd 5141 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
9052, 53, 30, 54, 89lemul1ad 12181 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘(𝐾𝑇))) ≤ ((1 / 𝑑) · (abs‘(𝐾𝑇))))
9143, 29absmuld 15473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) = ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘(𝐾𝑇))))
9230recnd 11263 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
9392, 71, 72divrec2d 12021 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) = ((1 / 𝑑) · (abs‘(𝐾𝑇))))
9490, 91, 933brtr4d 5151 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ ((abs‘(𝐾𝑇)) / 𝑑))
9518, 49, 32, 94fsumle 15815 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
9646, 50, 33, 51, 95letrd 11392 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
9733leabsd 15433 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)))
9846, 33, 48, 96, 97letrd 11392 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)))
9998adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)))
1001, 17, 33, 45, 99o1le 15669 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾𝑇))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119  cmpt 5201  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  +∞cpnf 11266  cle 11270  cmin 11466   / cdiv 11894  cn 12240  3c3 12296  0cn0 12501  cz 12588  +crp 13008  [,)cico 13364  ...cfz 13524  cfl 13807  abscabs 15253  𝑂(1)co1 15502  Σcsu 15702  Basecbs 17228  0gc0g 17453  ℤRHomczrh 21460  ℤ/nczn 21463  logclog 26515  μcmu 27057  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-tan 16087  df-pi 16088  df-dvds 16273  df-prm 16691  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-qus 17523  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338  df-log 26517  df-cxp 26518  df-atan 26829  df-em 26955  df-mu 27063  df-dchr 27196
This theorem is referenced by:  dchrvmasumiflem1  27464
  Copyright terms: Public domain W3C validator