MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem3 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem3 26863
Description: Lemma for dchrvmasum 26889. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum.g 𝐺 = (DChrβ€˜π‘)
rpvmasum.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum.1 1 = (0gβ€˜πΊ)
dchrisum.b (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrisum.n1 (πœ‘ β†’ 𝑋 β‰  1 )
dchrvmasum.f ((πœ‘ ∧ π‘š ∈ ℝ+) β†’ 𝐹 ∈ β„‚)
dchrvmasum.g (π‘š = (π‘₯ / 𝑑) β†’ 𝐹 = 𝐾)
dchrvmasum.c (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
dchrvmasum.t (πœ‘ β†’ 𝑇 ∈ β„‚)
dchrvmasum.1 ((πœ‘ ∧ π‘š ∈ (3[,)+∞)) β†’ (absβ€˜(𝐹 βˆ’ 𝑇)) ≀ (𝐢 Β· ((logβ€˜π‘š) / π‘š)))
dchrvmasum.r (πœ‘ β†’ 𝑅 ∈ ℝ)
dchrvmasum.2 (πœ‘ β†’ βˆ€π‘š ∈ (1[,)3)(absβ€˜(𝐹 βˆ’ 𝑇)) ≀ 𝑅)
Assertion
Ref Expression
dchrvmasumlem3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,π‘š, 1   π‘š,𝑑,π‘₯,𝐢   𝐹,𝑑,π‘₯   π‘š,𝐾   π‘š,𝑁,π‘₯   πœ‘,𝑑,π‘š,π‘₯   𝑇,𝑑,π‘š,π‘₯   𝑅,𝑑,π‘š,π‘₯   π‘š,𝑍,π‘₯   𝐷,π‘š,π‘₯   𝐿,𝑑,π‘š,π‘₯   𝑋,𝑑,π‘š,π‘₯
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(π‘š)   𝐺(π‘₯,π‘š,𝑑)   𝐾(π‘₯,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem3
StepHypRef Expression
1 1red 11163 . 2 (πœ‘ β†’ 1 ∈ ℝ)
2 rpvmasum.z . . 3 𝑍 = (β„€/nβ„€β€˜π‘)
3 rpvmasum.l . . 3 𝐿 = (β„€RHomβ€˜π‘)
4 rpvmasum.a . . 3 (πœ‘ β†’ 𝑁 ∈ β„•)
5 rpvmasum.g . . 3 𝐺 = (DChrβ€˜π‘)
6 rpvmasum.d . . 3 𝐷 = (Baseβ€˜πΊ)
7 rpvmasum.1 . . 3 1 = (0gβ€˜πΊ)
8 dchrisum.b . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐷)
9 dchrisum.n1 . . 3 (πœ‘ β†’ 𝑋 β‰  1 )
10 dchrvmasum.f . . 3 ((πœ‘ ∧ π‘š ∈ ℝ+) β†’ 𝐹 ∈ β„‚)
11 dchrvmasum.g . . 3 (π‘š = (π‘₯ / 𝑑) β†’ 𝐹 = 𝐾)
12 dchrvmasum.c . . 3 (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
13 dchrvmasum.t . . 3 (πœ‘ β†’ 𝑇 ∈ β„‚)
14 dchrvmasum.1 . . 3 ((πœ‘ ∧ π‘š ∈ (3[,)+∞)) β†’ (absβ€˜(𝐹 βˆ’ 𝑇)) ≀ (𝐢 Β· ((logβ€˜π‘š) / π‘š)))
15 dchrvmasum.r . . 3 (πœ‘ β†’ 𝑅 ∈ ℝ)
16 dchrvmasum.2 . . 3 (πœ‘ β†’ βˆ€π‘š ∈ (1[,)3)(absβ€˜(𝐹 βˆ’ 𝑇)) ≀ 𝑅)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16dchrvmasumlem2 26862 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)) ∈ 𝑂(1))
18 fzfid 13885 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
1911eleq1d 2823 . . . . . . 7 (π‘š = (π‘₯ / 𝑑) β†’ (𝐹 ∈ β„‚ ↔ 𝐾 ∈ β„‚))
2010ralrimiva 3144 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘š ∈ ℝ+ 𝐹 ∈ β„‚)
2120ad2antrr 725 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ βˆ€π‘š ∈ ℝ+ 𝐹 ∈ β„‚)
22 simpr 486 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
23 elfznn 13477 . . . . . . . . 9 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„•)
2423nnrpd 12962 . . . . . . . 8 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ ℝ+)
25 rpdivcl 12947 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ ℝ+) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2622, 24, 25syl2an 597 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2719, 21, 26rspcdva 3585 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝐾 ∈ β„‚)
2813ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑇 ∈ β„‚)
2927, 28subcld 11519 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (𝐾 βˆ’ 𝑇) ∈ β„‚)
3029abscld 15328 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(𝐾 βˆ’ 𝑇)) ∈ ℝ)
3123adantl 483 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„•)
3230, 31nndivred 12214 . . 3 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ ℝ)
3318, 32fsumrecl 15626 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ ℝ)
348ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑋 ∈ 𝐷)
35 elfzelz 13448 . . . . . . 7 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„€)
3635adantl 483 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„€)
375, 2, 6, 3, 34, 36dchrzrhcl 26609 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘‹β€˜(πΏβ€˜π‘‘)) ∈ β„‚)
38 mucl 26506 . . . . . . . . 9 (𝑑 ∈ β„• β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
3931, 38syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
4039zred 12614 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ ℝ)
4140, 31nndivred 12214 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ ℝ)
4241recnd 11190 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ β„‚)
4337, 42mulcld 11182 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) ∈ β„‚)
4443, 29mulcld 11182 . . 3 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇)) ∈ β„‚)
4518, 44fsumcl 15625 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇)) ∈ β„‚)
4645abscld 15328 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
4733recnd 11190 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ β„‚)
4847abscld 15328 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)) ∈ ℝ)
4944abscld 15328 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
5018, 49fsumrecl 15626 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
5118, 44fsumabs 15693 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))))
5243abscld 15328 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) ∈ ℝ)
5331nnrecred 12211 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 / 𝑑) ∈ ℝ)
5429absge0d 15336 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜(𝐾 βˆ’ 𝑇)))
5537, 42absmuld 15346 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) = ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))))
5637abscld 15328 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) ∈ ℝ)
57 1red 11163 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 1 ∈ ℝ)
5842abscld 15328 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) ∈ ℝ)
5937absge0d 15336 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))))
6042absge0d 15336 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)))
61 eqid 2737 . . . . . . . . . . . 12 (Baseβ€˜π‘) = (Baseβ€˜π‘)
624nnnn0d 12480 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑁 ∈ β„•0)
632, 61, 3znzrhfo 20970 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 𝐿:℀–ontoβ†’(Baseβ€˜π‘))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐿:℀–ontoβ†’(Baseβ€˜π‘))
65 fof 6761 . . . . . . . . . . . . . . 15 (𝐿:℀–ontoβ†’(Baseβ€˜π‘) β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6664, 65syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6766ad2antrr 725 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6867, 36ffvelcdmd 7041 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (πΏβ€˜π‘‘) ∈ (Baseβ€˜π‘))
695, 6, 2, 61, 34, 68dchrabs2 26626 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) ≀ 1)
7040recnd 11190 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ β„‚)
7131nncnd 12176 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„‚)
7231nnne0d 12210 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 β‰  0)
7370, 71, 72absdivd 15347 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / (absβ€˜π‘‘)))
7431nnrpd 12962 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ ℝ+)
7574rprege0d 12971 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑))
76 absid 15188 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ℝ ∧ 0 ≀ 𝑑) β†’ (absβ€˜π‘‘) = 𝑑)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜π‘‘) = 𝑑)
7877oveq2d 7378 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(ΞΌβ€˜π‘‘)) / (absβ€˜π‘‘)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑))
7973, 78eqtrd 2777 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑))
8070abscld 15328 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ∈ ℝ)
81 mule1 26513 . . . . . . . . . . . . . 14 (𝑑 ∈ β„• β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ≀ 1)
8231, 81syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ≀ 1)
8380, 57, 74, 82lediv1dd 13022 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑) ≀ (1 / 𝑑))
8479, 83eqbrtrd 5132 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) ≀ (1 / 𝑑))
8556, 57, 58, 53, 59, 60, 69, 84lemul12ad 12104 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 Β· (1 / 𝑑)))
8653recnd 11190 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 / 𝑑) ∈ β„‚)
8786mulid2d 11180 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 Β· (1 / 𝑑)) = (1 / 𝑑))
8885, 87breqtrd 5136 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 / 𝑑))
8955, 88eqbrtrd 5132 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 / 𝑑))
9052, 53, 30, 54, 89lemul1ad 12101 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) Β· (absβ€˜(𝐾 βˆ’ 𝑇))) ≀ ((1 / 𝑑) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9143, 29absmuld 15346 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) = ((absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9230recnd 11190 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(𝐾 βˆ’ 𝑇)) ∈ β„‚)
9392, 71, 72divrec2d 11942 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) = ((1 / 𝑑) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9490, 91, 933brtr4d 5142 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9518, 49, 32, 94fsumle 15691 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9646, 50, 33, 51, 95letrd 11319 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9733leabsd 15306 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
9846, 33, 48, 96, 97letrd 11319 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
9998adantrr 716 . 2 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
1001, 17, 33, 45, 99o1le 15544 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆ€wral 3065   class class class wbr 5110   ↦ cmpt 5193  βŸΆwf 6497  β€“ontoβ†’wfo 6499  β€˜cfv 6501  (class class class)co 7362  β„‚cc 11056  β„cr 11057  0cc0 11058  1c1 11059   Β· cmul 11063  +∞cpnf 11193   ≀ cle 11197   βˆ’ cmin 11392   / cdiv 11819  β„•cn 12160  3c3 12216  β„•0cn0 12420  β„€cz 12506  β„+crp 12922  [,)cico 13273  ...cfz 13431  βŒŠcfl 13702  abscabs 15126  π‘‚(1)co1 15375  Ξ£csu 15577  Basecbs 17090  0gc0g 17328  β„€RHomczrh 20916  β„€/nβ„€czn 20919  logclog 25926  ΞΌcmu 26460  DChrcdchr 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-acn 9885  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-o1 15379  df-lo1 15380  df-sum 15578  df-ef 15957  df-e 15958  df-sin 15959  df-cos 15960  df-tan 15961  df-pi 15962  df-dvds 16144  df-prm 16555  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-qus 17398  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-nsg 18933  df-eqg 18934  df-ghm 19013  df-cntz 19104  df-od 19317  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-cring 19974  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-dvr 20119  df-rnghom 20155  df-drng 20201  df-subrg 20236  df-lmod 20340  df-lss 20409  df-lsp 20449  df-sra 20649  df-rgmod 20650  df-lidl 20651  df-rsp 20652  df-2idl 20718  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-zring 20886  df-zrh 20920  df-zn 20923  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-cmp 22754  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-ulm 25752  df-log 25928  df-cxp 25929  df-atan 26233  df-em 26358  df-mu 26466  df-dchr 26597
This theorem is referenced by:  dchrvmasumiflem1  26865
  Copyright terms: Public domain W3C validator