MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem3 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem3 27419
Description: Lemma for dchrvmasum 27445. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum.g 𝐺 = (DChrβ€˜π‘)
rpvmasum.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum.1 1 = (0gβ€˜πΊ)
dchrisum.b (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrisum.n1 (πœ‘ β†’ 𝑋 β‰  1 )
dchrvmasum.f ((πœ‘ ∧ π‘š ∈ ℝ+) β†’ 𝐹 ∈ β„‚)
dchrvmasum.g (π‘š = (π‘₯ / 𝑑) β†’ 𝐹 = 𝐾)
dchrvmasum.c (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
dchrvmasum.t (πœ‘ β†’ 𝑇 ∈ β„‚)
dchrvmasum.1 ((πœ‘ ∧ π‘š ∈ (3[,)+∞)) β†’ (absβ€˜(𝐹 βˆ’ 𝑇)) ≀ (𝐢 Β· ((logβ€˜π‘š) / π‘š)))
dchrvmasum.r (πœ‘ β†’ 𝑅 ∈ ℝ)
dchrvmasum.2 (πœ‘ β†’ βˆ€π‘š ∈ (1[,)3)(absβ€˜(𝐹 βˆ’ 𝑇)) ≀ 𝑅)
Assertion
Ref Expression
dchrvmasumlem3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,π‘š, 1   π‘š,𝑑,π‘₯,𝐢   𝐹,𝑑,π‘₯   π‘š,𝐾   π‘š,𝑁,π‘₯   πœ‘,𝑑,π‘š,π‘₯   𝑇,𝑑,π‘š,π‘₯   𝑅,𝑑,π‘š,π‘₯   π‘š,𝑍,π‘₯   𝐷,π‘š,π‘₯   𝐿,𝑑,π‘š,π‘₯   𝑋,𝑑,π‘š,π‘₯
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(π‘š)   𝐺(π‘₯,π‘š,𝑑)   𝐾(π‘₯,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem3
StepHypRef Expression
1 1red 11237 . 2 (πœ‘ β†’ 1 ∈ ℝ)
2 rpvmasum.z . . 3 𝑍 = (β„€/nβ„€β€˜π‘)
3 rpvmasum.l . . 3 𝐿 = (β„€RHomβ€˜π‘)
4 rpvmasum.a . . 3 (πœ‘ β†’ 𝑁 ∈ β„•)
5 rpvmasum.g . . 3 𝐺 = (DChrβ€˜π‘)
6 rpvmasum.d . . 3 𝐷 = (Baseβ€˜πΊ)
7 rpvmasum.1 . . 3 1 = (0gβ€˜πΊ)
8 dchrisum.b . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐷)
9 dchrisum.n1 . . 3 (πœ‘ β†’ 𝑋 β‰  1 )
10 dchrvmasum.f . . 3 ((πœ‘ ∧ π‘š ∈ ℝ+) β†’ 𝐹 ∈ β„‚)
11 dchrvmasum.g . . 3 (π‘š = (π‘₯ / 𝑑) β†’ 𝐹 = 𝐾)
12 dchrvmasum.c . . 3 (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
13 dchrvmasum.t . . 3 (πœ‘ β†’ 𝑇 ∈ β„‚)
14 dchrvmasum.1 . . 3 ((πœ‘ ∧ π‘š ∈ (3[,)+∞)) β†’ (absβ€˜(𝐹 βˆ’ 𝑇)) ≀ (𝐢 Β· ((logβ€˜π‘š) / π‘š)))
15 dchrvmasum.r . . 3 (πœ‘ β†’ 𝑅 ∈ ℝ)
16 dchrvmasum.2 . . 3 (πœ‘ β†’ βˆ€π‘š ∈ (1[,)3)(absβ€˜(𝐹 βˆ’ 𝑇)) ≀ 𝑅)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16dchrvmasumlem2 27418 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)) ∈ 𝑂(1))
18 fzfid 13962 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
1911eleq1d 2813 . . . . . . 7 (π‘š = (π‘₯ / 𝑑) β†’ (𝐹 ∈ β„‚ ↔ 𝐾 ∈ β„‚))
2010ralrimiva 3141 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘š ∈ ℝ+ 𝐹 ∈ β„‚)
2120ad2antrr 725 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ βˆ€π‘š ∈ ℝ+ 𝐹 ∈ β„‚)
22 simpr 484 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
23 elfznn 13554 . . . . . . . . 9 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„•)
2423nnrpd 13038 . . . . . . . 8 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ ℝ+)
25 rpdivcl 13023 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ ℝ+) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2622, 24, 25syl2an 595 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2719, 21, 26rspcdva 3608 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝐾 ∈ β„‚)
2813ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑇 ∈ β„‚)
2927, 28subcld 11593 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (𝐾 βˆ’ 𝑇) ∈ β„‚)
3029abscld 15407 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(𝐾 βˆ’ 𝑇)) ∈ ℝ)
3123adantl 481 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„•)
3230, 31nndivred 12288 . . 3 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ ℝ)
3318, 32fsumrecl 15704 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ ℝ)
348ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑋 ∈ 𝐷)
35 elfzelz 13525 . . . . . . 7 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„€)
3635adantl 481 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„€)
375, 2, 6, 3, 34, 36dchrzrhcl 27165 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘‹β€˜(πΏβ€˜π‘‘)) ∈ β„‚)
38 mucl 27060 . . . . . . . . 9 (𝑑 ∈ β„• β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
3931, 38syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
4039zred 12688 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ ℝ)
4140, 31nndivred 12288 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ ℝ)
4241recnd 11264 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ β„‚)
4337, 42mulcld 11256 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) ∈ β„‚)
4443, 29mulcld 11256 . . 3 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇)) ∈ β„‚)
4518, 44fsumcl 15703 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇)) ∈ β„‚)
4645abscld 15407 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
4733recnd 11264 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ∈ β„‚)
4847abscld 15407 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)) ∈ ℝ)
4944abscld 15407 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
5018, 49fsumrecl 15704 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ ℝ)
5118, 44fsumabs 15771 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))))
5243abscld 15407 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) ∈ ℝ)
5331nnrecred 12285 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 / 𝑑) ∈ ℝ)
5429absge0d 15415 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜(𝐾 βˆ’ 𝑇)))
5537, 42absmuld 15425 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) = ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))))
5637abscld 15407 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) ∈ ℝ)
57 1red 11237 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 1 ∈ ℝ)
5842abscld 15407 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) ∈ ℝ)
5937absge0d 15415 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))))
6042absge0d 15415 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)))
61 eqid 2727 . . . . . . . . . . . 12 (Baseβ€˜π‘) = (Baseβ€˜π‘)
624nnnn0d 12554 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑁 ∈ β„•0)
632, 61, 3znzrhfo 21468 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 𝐿:℀–ontoβ†’(Baseβ€˜π‘))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐿:℀–ontoβ†’(Baseβ€˜π‘))
65 fof 6805 . . . . . . . . . . . . . . 15 (𝐿:℀–ontoβ†’(Baseβ€˜π‘) β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6664, 65syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6766ad2antrr 725 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
6867, 36ffvelcdmd 7089 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (πΏβ€˜π‘‘) ∈ (Baseβ€˜π‘))
695, 6, 2, 61, 34, 68dchrabs2 27182 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) ≀ 1)
7040recnd 11264 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ β„‚)
7131nncnd 12250 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„‚)
7231nnne0d 12284 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 β‰  0)
7370, 71, 72absdivd 15426 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / (absβ€˜π‘‘)))
7431nnrpd 13038 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ ℝ+)
7574rprege0d 13047 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑))
76 absid 15267 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ℝ ∧ 0 ≀ 𝑑) β†’ (absβ€˜π‘‘) = 𝑑)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜π‘‘) = 𝑑)
7877oveq2d 7430 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(ΞΌβ€˜π‘‘)) / (absβ€˜π‘‘)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑))
7973, 78eqtrd 2767 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) = ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑))
8070abscld 15407 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ∈ ℝ)
81 mule1 27067 . . . . . . . . . . . . . 14 (𝑑 ∈ β„• β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ≀ 1)
8231, 81syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(ΞΌβ€˜π‘‘)) ≀ 1)
8380, 57, 74, 82lediv1dd 13098 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(ΞΌβ€˜π‘‘)) / 𝑑) ≀ (1 / 𝑑))
8479, 83eqbrtrd 5164 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑)) ≀ (1 / 𝑑))
8556, 57, 58, 53, 59, 60, 69, 84lemul12ad 12178 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 Β· (1 / 𝑑)))
8653recnd 11264 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 / 𝑑) ∈ β„‚)
8786mullidd 11254 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 Β· (1 / 𝑑)) = (1 / 𝑑))
8885, 87breqtrd 5168 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘‘))) Β· (absβ€˜((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 / 𝑑))
8955, 88eqbrtrd 5164 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) ≀ (1 / 𝑑))
9052, 53, 30, 54, 89lemul1ad 12175 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) Β· (absβ€˜(𝐾 βˆ’ 𝑇))) ≀ ((1 / 𝑑) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9143, 29absmuld 15425 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) = ((absβ€˜((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑))) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9230recnd 11264 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(𝐾 βˆ’ 𝑇)) ∈ β„‚)
9392, 71, 72divrec2d 12016 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) = ((1 / 𝑑) Β· (absβ€˜(𝐾 βˆ’ 𝑇))))
9490, 91, 933brtr4d 5174 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ ((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9518, 49, 32, 94fsumle 15769 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(absβ€˜(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9646, 50, 33, 51, 95letrd 11393 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑))
9733leabsd 15385 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
9846, 33, 48, 96, 97letrd 11393 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
9998adantrr 716 . 2 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))((absβ€˜(𝐾 βˆ’ 𝑇)) / 𝑑)))
1001, 17, 33, 45, 99o1le 15623 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝐾 βˆ’ 𝑇))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056   class class class wbr 5142   ↦ cmpt 5225  βŸΆwf 6538  β€“ontoβ†’wfo 6540  β€˜cfv 6542  (class class class)co 7414  β„‚cc 11128  β„cr 11129  0cc0 11130  1c1 11131   Β· cmul 11135  +∞cpnf 11267   ≀ cle 11271   βˆ’ cmin 11466   / cdiv 11893  β„•cn 12234  3c3 12290  β„•0cn0 12494  β„€cz 12580  β„+crp 12998  [,)cico 13350  ...cfz 13508  βŒŠcfl 13779  abscabs 15205  π‘‚(1)co1 15454  Ξ£csu 15656  Basecbs 17171  0gc0g 17412  β„€RHomczrh 21412  β„€/nβ„€czn 21415  logclog 26475  ΞΌcmu 27014  DChrcdchr 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209  ax-mulf 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-ec 8720  df-qs 8724  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-acn 9957  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-xnn0 12567  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-o1 15458  df-lo1 15459  df-sum 15657  df-ef 16035  df-e 16036  df-sin 16037  df-cos 16038  df-tan 16039  df-pi 16040  df-dvds 16223  df-prm 16634  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-qus 17482  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-nsg 19070  df-eqg 19071  df-ghm 19159  df-cntz 19259  df-od 19474  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-subrng 20472  df-subrg 20497  df-drng 20615  df-lmod 20734  df-lss 20805  df-lsp 20845  df-sra 21047  df-rgmod 21048  df-lidl 21093  df-rsp 21094  df-2idl 21133  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-zring 21360  df-zrh 21416  df-zn 21419  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-cmp 23278  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-limc 25782  df-dv 25783  df-ulm 26300  df-log 26477  df-cxp 26478  df-atan 26786  df-em 26912  df-mu 27020  df-dchr 27153
This theorem is referenced by:  dchrvmasumiflem1  27421
  Copyright terms: Public domain W3C validator