Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem39 Structured version   Visualization version   GIF version

Theorem fourierdlem39 45534
Description: Integration by parts of ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem39.a (𝜑𝐴 ∈ ℝ)
fourierdlem39.b (𝜑𝐵 ∈ ℝ)
fourierdlem39.aleb (𝜑𝐴𝐵)
fourierdlem39.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
fourierdlem39.g 𝐺 = (ℝ D 𝐹)
fourierdlem39.gcn (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem39.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem39.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
fourierdlem39 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fourierdlem39
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem39.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem39.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem39.aleb . 2 (𝜑𝐴𝐵)
4 fourierdlem39.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
5 cncff 24812 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
64, 5syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
76feqmptd 6967 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
87eqcomd 2734 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = 𝐹)
98, 4eqeltrd 2829 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 coscn 26381 . . . . . 6 cos ∈ (ℂ–cn→ℂ)
1110a1i 11 . . . . 5 (𝜑 → cos ∈ (ℂ–cn→ℂ))
121, 2iccssred 13443 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
13 ax-resscn 11195 . . . . . . . 8 ℝ ⊆ ℂ
1412, 13sstrdi 3992 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
15 fourierdlem39.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
1615rpred 13048 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
1716recnd 11272 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
18 ssid 4002 . . . . . . . 8 ℂ ⊆ ℂ
1918a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
2014, 17, 19constcncfg 45260 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2114, 19idcncfg 45261 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2220, 21mulcncf 25373 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2311, 22cncfmpt1f 24833 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2415rpcnne0d 13057 . . . . . 6 (𝜑 → (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
25 eldifsn 4791 . . . . . 6 (𝑅 ∈ (ℂ ∖ {0}) ↔ (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
2624, 25sylibr 233 . . . . 5 (𝜑𝑅 ∈ (ℂ ∖ {0}))
27 difssd 4131 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
2814, 26, 27constcncfg 45260 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
2923, 28divcncf 25375 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3029negcncfg 45269 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
31 fourierdlem39.gcn . . . . . 6 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
32 cncff 24812 . . . . . 6 (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3331, 32syl 17 . . . . 5 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3433feqmptd 6967 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
3534eqcomd 2734 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) = 𝐺)
3635, 31eqeltrd 2829 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
37 sincn 26380 . . . 4 sin ∈ (ℂ–cn→ℂ)
3837a1i 11 . . 3 (𝜑 → sin ∈ (ℂ–cn→ℂ))
39 ioosscn 13418 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
4039a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
4140, 17, 19constcncfg 45260 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4240, 19idcncfg 45261 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑥) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4341, 42mulcncf 25373 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4438, 43cncfmpt1f 24833 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
45 ioombl 25493 . . . 4 (𝐴(,)𝐵) ∈ dom vol
4645a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
47 volioo 25497 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
481, 2, 3, 47syl3anc 1369 . . . 4 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
492, 1resubcld 11672 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
5048, 49eqeltrd 2829 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
51 eqid 2728 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))
52 ioossicc 13442 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5352a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
546adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553sselda 3980 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
5654, 55ffvelcdmd 7095 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
5751, 9, 53, 19, 56cncfmptssg 45259 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5857, 44mulcncf 25373 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
59 cniccbdd 25389 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
601, 2, 4, 59syl3anc 1369 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
61 nfra1 3278 . . . . . . . 8 𝑧𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
6252sseli 3976 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
63 rspa 3242 . . . . . . . . . 10 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6462, 63sylan2 592 . . . . . . . . 9 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6564ex 412 . . . . . . . 8 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → (𝑧 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑧)) ≤ 𝑦))
6661, 65ralrimi 3251 . . . . . . 7 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
6766a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6867reximdva 3165 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6960, 68mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
70 nfv 1910 . . . . . . . 8 𝑧(𝜑𝑦 ∈ ℝ)
71 nfra1 3278 . . . . . . . 8 𝑧𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
7270, 71nfan 1895 . . . . . . 7 𝑧((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
73 simpll 766 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (𝜑𝑦 ∈ ℝ))
74 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
7516adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
76 elioore 13386 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
7875, 77remulcld 11274 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℝ)
7978resincld 16119 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
8079recnd 11272 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℂ)
8156, 80mulcld 11264 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
8281ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
83 dmmptg 6246 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8584adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8674, 85eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
8786ad4ant14 751 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
88 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
8986adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
90 rspa 3242 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9188, 89, 90syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9291adantllr 718 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
93 eqidd 2729 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
94 fveq2 6897 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
95 oveq2 7428 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
9695fveq2d 6901 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (sin‘(𝑅 · 𝑥)) = (sin‘(𝑅 · 𝑧)))
9794, 96oveq12d 7438 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
9897adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
1006adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
10152, 99sselid 3978 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
102100, 101ffvelcdmd 7095 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
10317adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
10439, 99sselid 3978 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
105103, 104mulcld 11264 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
106105sincld 16106 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
107102, 106mulcld 11264 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))) ∈ ℂ)
10893, 98, 99, 107fvmptd 7012 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
109108fveq2d 6901 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))))
110102, 106absmuld 15433 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
111109, 110eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
112111adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
113112adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
114 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝜑)
115 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ (𝐴(,)𝐵))
116114, 115, 102syl2anc 583 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝐹𝑧) ∈ ℂ)
117116abscld 15415 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ∈ ℝ)
11817ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑅 ∈ ℂ)
11939, 115sselid 3978 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ ℂ)
120118, 119mulcld 11264 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑅 · 𝑧) ∈ ℂ)
121120sincld 16106 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
122121abscld 15415 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
123117, 122remulcld 11274 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ∈ ℝ)
124 1red 11245 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 1 ∈ ℝ)
125117, 124remulcld 11274 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ∈ ℝ)
126 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℝ)
127126, 124remulcld 11274 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) ∈ ℝ)
128106abscld 15415 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
129 1red 11245 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
130102abscld 15415 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ∈ ℝ)
131102absge0d 15423 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐹𝑧)))
13216adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
133 elioore 13386 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
134133adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
135132, 134remulcld 11274 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℝ)
136 abssinbd 44677 . . . . . . . . . . . . . . . 16 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
137135, 136syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
138128, 129, 130, 131, 137lemul2ad 12184 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
139138adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
140139adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
141 0le1 11767 . . . . . . . . . . . . . 14 0 ≤ 1
142141a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 0 ≤ 1)
143 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ≤ 𝑦)
144117, 126, 124, 142, 143lemul1ad 12183 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ≤ (𝑦 · 1))
145123, 125, 127, 140, 144letrd 11401 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ (𝑦 · 1))
146113, 145eqbrtrd 5170 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ (𝑦 · 1))
147126recnd 11272 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℂ)
148147mulridd 11261 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) = 𝑦)
149146, 148breqtrd 5174 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15073, 87, 92, 149syl21anc 837 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
151150ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15272, 151ralrimi 3251 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
153152ex 412 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
154153reximdva 3165 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15569, 154mpd 15 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15646, 50, 58, 155cnbdibl 45350 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ 𝐿1)
15711, 43cncfmpt1f 24833 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15840, 26, 27constcncfg 45260 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
159157, 158divcncf 25375 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
160159negcncfg 45269 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16136, 160mulcncf 25373 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
162 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
16316adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ)
16415rpne0d 13053 . . . . . . . 8 (𝜑𝑅 ≠ 0)
165164adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ≠ 0)
166162, 163, 165redivcld 12072 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝑅) ∈ ℝ)
167166adantr 480 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑦 / 𝑅) ∈ ℝ)
168 simpr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
16933ffvelcdmda 7094 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
17017adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
17176recnd 11272 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
172171adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
173170, 172mulcld 11264 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℂ)
174173coscld 16107 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
175164adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
176174, 170, 175divcld 12020 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
177176negcld 11588 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
178169, 177mulcld 11264 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
179178ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
180179adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
181 dmmptg 6246 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
182180, 181syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
183168, 182eleqtrd 2831 . . . . . . . 8 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
184183ad4ant14 751 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
185 eqidd 2729 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
186 fveq2 6897 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
18795fveq2d 6901 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝑧)))
188187oveq1d 7435 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝑧)) / 𝑅))
189188negeqd 11484 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝑧)) / 𝑅))
190186, 189oveq12d 7438 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
19233ffvelcdmda 7094 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
193105coscld 16107 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
194164adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
195193, 103, 194divcld 12020 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
196195negcld 11588 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
197192, 196mulcld 11264 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℂ)
198185, 191, 99, 197fvmptd 7012 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
199198fveq2d 6901 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
200199ad4ant14 751 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
20133ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
202201ffvelcdmda 7094 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
203202abscld 15415 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ∈ ℝ)
204 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
20517ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
206104ad4ant14 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
207205, 206mulcld 11264 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
208207coscld 16107 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
209164ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
210208, 205, 209divcld 12020 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
211210negcld 11588 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
212211abscld 15415 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℝ)
21315rprecred 13059 . . . . . . . . . . 11 (𝜑 → (1 / 𝑅) ∈ ℝ)
214213ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (1 / 𝑅) ∈ ℝ)
215202absge0d 15423 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐺𝑧)))
216211absge0d 15423 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)))
217186fveq2d 6901 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
218217breq1d 5158 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
219218rspccva 3608 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
220219adantll 713 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
221195absnegd 15428 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)))
222193, 103, 194absdivd 15434 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)))
22315rpge0d 13052 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑅)
22416, 223absidd 15401 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑅) = 𝑅)
225224oveq2d 7436 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
226225adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
227221, 222, 2263eqtrd 2772 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
228193abscld 15415 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ∈ ℝ)
22915adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ+)
230 abscosbd 44660 . . . . . . . . . . . . . 14 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
231135, 230syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
232228, 129, 229, 231lediv1dd 13106 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅) ≤ (1 / 𝑅))
233227, 232eqbrtrd 5170 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
234233ad4ant14 751 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
235203, 204, 212, 214, 215, 216, 220, 234lemul12ad 12186 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 · (1 / 𝑅)))
236192, 196absmuld 15433 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
237236ad4ant14 751 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
238204recnd 11272 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℂ)
239238, 205, 209divrecd 12023 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑦 / 𝑅) = (𝑦 · (1 / 𝑅)))
240235, 237, 2393brtr4d 5180 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 / 𝑅))
241200, 240eqbrtrd 5170 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
242184, 241syldan 590 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
243242ralrimiva 3143 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
244 breq2 5152 . . . . . . 7 (𝑤 = (𝑦 / 𝑅) → ((abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
245244ralbidv 3174 . . . . . 6 (𝑤 = (𝑦 / 𝑅) → (∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
246245rspcev 3609 . . . . 5 (((𝑦 / 𝑅) ∈ ℝ ∧ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
247167, 243, 246syl2anc 583 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
248 fourierdlem39.gbd . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
249247, 248r19.29a 3159 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
25046, 50, 161, 249cnbdibl 45350 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ 𝐿1)
2518oveq2d 7436 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
252 fourierdlem39.g . . . . 5 𝐺 = (ℝ D 𝐹)
253252eqcomi 2737 . . . 4 (ℝ D 𝐹) = 𝐺
254253a1i 11 . . 3 (𝜑 → (ℝ D 𝐹) = 𝐺)
255251, 254, 343eqtrd 2772 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
256 reelprrecn 11230 . . . . 5 ℝ ∈ {ℝ, ℂ}
257256a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
25817adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℂ)
259 recn 11228 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
260259adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
261258, 260mulcld 11264 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℂ)
262261coscld 16107 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
263164adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ 0)
264262, 258, 263divcld 12020 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
265264negcld 11588 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
26616adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℝ)
267 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
268266, 267remulcld 11274 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℝ)
269268resincld 16119 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
270269renegcld 11671 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → -(sin‘(𝑅 · 𝑥)) ∈ ℝ)
271270, 266remulcld 11274 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℝ)
272271, 266, 263redivcld 12072 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
273272renegcld 11671 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
274 recoscl 16117 . . . . . . . . 9 (𝑦 ∈ ℝ → (cos‘𝑦) ∈ ℝ)
275274adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℝ)
276275recnd 11272 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℂ)
277 resincl 16116 . . . . . . . . 9 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
278277renegcld 11671 . . . . . . . 8 (𝑦 ∈ ℝ → -(sin‘𝑦) ∈ ℝ)
279278adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → -(sin‘𝑦) ∈ ℝ)
280 1red 11245 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
281257dvmptid 25888 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
282257, 260, 280, 281, 17dvmptcmul 25895 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ (𝑅 · 1)))
283258mulridd 11261 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 1) = 𝑅)
284283mpteq2dva 5248 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑅 · 1)) = (𝑥 ∈ ℝ ↦ 𝑅))
285282, 284eqtrd 2768 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ 𝑅))
286 dvcosre 45300 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦))
287286a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦)))
288 fveq2 6897 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → (cos‘𝑦) = (cos‘(𝑅 · 𝑥)))
289 fveq2 6897 . . . . . . . 8 (𝑦 = (𝑅 · 𝑥) → (sin‘𝑦) = (sin‘(𝑅 · 𝑥)))
290289negeqd 11484 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝑅 · 𝑥)))
291257, 257, 268, 266, 276, 279, 285, 287, 288, 290dvmptco 25903 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘(𝑅 · 𝑥)))) = (𝑥 ∈ ℝ ↦ (-(sin‘(𝑅 · 𝑥)) · 𝑅)))
292257, 262, 271, 291, 17, 164dvmptdivc 25896 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
293257, 264, 272, 292dvmptneg 25897 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
294 eqid 2728 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
295294tgioo2 24718 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
296 iccntr 24736 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2971, 2, 296syl2anc 583 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
298257, 265, 273, 293, 12, 295, 294, 297dvmptres2 25893 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
29980, 170mulneg1d 11697 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) = -((sin‘(𝑅 · 𝑥)) · 𝑅))
300299oveq1d 7435 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30180, 170mulcld 11264 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℂ)
302301, 170, 175divnegd 12033 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
303300, 302eqtr4d 2771 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
304303negeqd 11484 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
305301, 170, 175divcld 12020 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℂ)
306305negnegd 11592 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30780, 170, 175divcan4d 12026 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
308304, 306, 3073eqtrd 2772 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
309308mpteq2dva 5248 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
310298, 309eqtrd 2768 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
311 fveq2 6897 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
312 oveq2 7428 . . . . . . 7 (𝑥 = 𝐴 → (𝑅 · 𝑥) = (𝑅 · 𝐴))
313312fveq2d 6901 . . . . . 6 (𝑥 = 𝐴 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐴)))
314313oveq1d 7435 . . . . 5 (𝑥 = 𝐴 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐴)) / 𝑅))
315314negeqd 11484 . . . 4 (𝑥 = 𝐴 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐴)) / 𝑅))
316311, 315oveq12d 7438 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
317316adantl 481 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
318 fveq2 6897 . . . 4 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
319 oveq2 7428 . . . . . . 7 (𝑥 = 𝐵 → (𝑅 · 𝑥) = (𝑅 · 𝐵))
320319fveq2d 6901 . . . . . 6 (𝑥 = 𝐵 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐵)))
321320oveq1d 7435 . . . . 5 (𝑥 = 𝐵 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐵)) / 𝑅))
322321negeqd 11484 . . . 4 (𝑥 = 𝐵 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐵)) / 𝑅))
323318, 322oveq12d 7438 . . 3 (𝑥 = 𝐵 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
324323adantl 481 . 2 ((𝜑𝑥 = 𝐵) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
3251, 2, 3, 9, 30, 36, 44, 156, 250, 255, 310, 317, 324itgparts 25981 1 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  cdif 3944  wss 3947  {csn 4629  {cpr 4631   class class class wbr 5148  cmpt 5231  dom cdm 5678  ran crn 5679  wf 6544  cfv 6548  (class class class)co 7420  cc 11136  cr 11137  0cc0 11138  1c1 11139   · cmul 11143  cle 11279  cmin 11474  -cneg 11475   / cdiv 11901  +crp 13006  (,)cioo 13356  [,]cicc 13359  abscabs 15213  sincsin 16039  cosccos 16040  TopOpenctopn 17402  topGenctg 17418  fldccnfld 21278  intcnt 22920  cnccncf 24795  volcvol 25391  citg 25546   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-symdif 4243  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-omul 8491  df-er 8724  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043  df-sin 16045  df-cos 16046  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19023  df-cntz 19267  df-cmn 19736  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-fbas 21275  df-fg 21276  df-cnfld 21279  df-top 22795  df-topon 22812  df-topsp 22834  df-bases 22848  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24797  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-limc 25794  df-dv 25795
This theorem is referenced by:  fourierdlem73  45567
  Copyright terms: Public domain W3C validator