Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem39 Structured version   Visualization version   GIF version

Theorem fourierdlem39 43269
Description: Integration by parts of ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem39.a (𝜑𝐴 ∈ ℝ)
fourierdlem39.b (𝜑𝐵 ∈ ℝ)
fourierdlem39.aleb (𝜑𝐴𝐵)
fourierdlem39.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
fourierdlem39.g 𝐺 = (ℝ D 𝐹)
fourierdlem39.gcn (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem39.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem39.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
fourierdlem39 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fourierdlem39
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem39.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem39.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem39.aleb . 2 (𝜑𝐴𝐵)
4 fourierdlem39.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
5 cncff 23657 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
64, 5syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
76feqmptd 6749 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
87eqcomd 2745 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = 𝐹)
98, 4eqeltrd 2834 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 coscn 25204 . . . . . 6 cos ∈ (ℂ–cn→ℂ)
1110a1i 11 . . . . 5 (𝜑 → cos ∈ (ℂ–cn→ℂ))
121, 2iccssred 12920 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
13 ax-resscn 10684 . . . . . . . 8 ℝ ⊆ ℂ
1412, 13sstrdi 3899 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
15 fourierdlem39.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
1615rpred 12526 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
1716recnd 10759 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
18 ssid 3909 . . . . . . . 8 ℂ ⊆ ℂ
1918a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
2014, 17, 19constcncfg 42995 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2114, 19idcncfg 42996 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2220, 21mulcncf 24210 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2311, 22cncfmpt1f 23678 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2415rpcnne0d 12535 . . . . . 6 (𝜑 → (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
25 eldifsn 4685 . . . . . 6 (𝑅 ∈ (ℂ ∖ {0}) ↔ (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
2624, 25sylibr 237 . . . . 5 (𝜑𝑅 ∈ (ℂ ∖ {0}))
27 difssd 4033 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
2814, 26, 27constcncfg 42995 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
2923, 28divcncf 24211 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3029negcncfg 43004 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
31 fourierdlem39.gcn . . . . . 6 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
32 cncff 23657 . . . . . 6 (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3331, 32syl 17 . . . . 5 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3433feqmptd 6749 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
3534eqcomd 2745 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) = 𝐺)
3635, 31eqeltrd 2834 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
37 sincn 25203 . . . 4 sin ∈ (ℂ–cn→ℂ)
3837a1i 11 . . 3 (𝜑 → sin ∈ (ℂ–cn→ℂ))
39 ioosscn 12895 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
4039a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
4140, 17, 19constcncfg 42995 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4240, 19idcncfg 42996 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑥) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4341, 42mulcncf 24210 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4438, 43cncfmpt1f 23678 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
45 ioombl 24329 . . . 4 (𝐴(,)𝐵) ∈ dom vol
4645a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
47 volioo 24333 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
481, 2, 3, 47syl3anc 1372 . . . 4 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
492, 1resubcld 11158 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
5048, 49eqeltrd 2834 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
51 eqid 2739 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))
52 ioossicc 12919 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5352a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
546adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553sselda 3887 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
5654, 55ffvelrnd 6874 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
5751, 9, 53, 19, 56cncfmptssg 42994 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5857, 44mulcncf 24210 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
59 cniccbdd 24225 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
601, 2, 4, 59syl3anc 1372 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
61 nfra1 3132 . . . . . . . 8 𝑧𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
6252sseli 3883 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
63 rspa 3120 . . . . . . . . . 10 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6462, 63sylan2 596 . . . . . . . . 9 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6564ex 416 . . . . . . . 8 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → (𝑧 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑧)) ≤ 𝑦))
6661, 65ralrimi 3129 . . . . . . 7 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
6766a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6867reximdva 3185 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6960, 68mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
70 nfv 1921 . . . . . . . 8 𝑧(𝜑𝑦 ∈ ℝ)
71 nfra1 3132 . . . . . . . 8 𝑧𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
7270, 71nfan 1906 . . . . . . 7 𝑧((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
73 simpll 767 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (𝜑𝑦 ∈ ℝ))
74 simpr 488 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
7516adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
76 elioore 12863 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
7776adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
7875, 77remulcld 10761 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℝ)
7978resincld 15600 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
8079recnd 10759 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℂ)
8156, 80mulcld 10751 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
8281ralrimiva 3097 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
83 dmmptg 6084 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8584adantr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8674, 85eleqtrd 2836 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
8786ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
88 simplr 769 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
8986adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
90 rspa 3120 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9188, 89, 90syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9291adantllr 719 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
93 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
94 fveq2 6686 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
95 oveq2 7190 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
9695fveq2d 6690 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (sin‘(𝑅 · 𝑥)) = (sin‘(𝑅 · 𝑧)))
9794, 96oveq12d 7200 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
9897adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
99 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
1006adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
10152, 99sseldi 3885 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
102100, 101ffvelrnd 6874 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
10317adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
10439, 99sseldi 3885 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
105103, 104mulcld 10751 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
106105sincld 15587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
107102, 106mulcld 10751 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))) ∈ ℂ)
10893, 98, 99, 107fvmptd 6794 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
109108fveq2d 6690 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))))
110102, 106absmuld 14916 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
111109, 110eqtrd 2774 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
112111adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
113112adantr 484 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
114 simplll 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝜑)
115 simplr 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ (𝐴(,)𝐵))
116114, 115, 102syl2anc 587 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝐹𝑧) ∈ ℂ)
117116abscld 14898 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ∈ ℝ)
11817ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑅 ∈ ℂ)
11939, 115sseldi 3885 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ ℂ)
120118, 119mulcld 10751 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑅 · 𝑧) ∈ ℂ)
121120sincld 15587 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
122121abscld 14898 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
123117, 122remulcld 10761 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ∈ ℝ)
124 1red 10732 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 1 ∈ ℝ)
125117, 124remulcld 10761 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ∈ ℝ)
126 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℝ)
127126, 124remulcld 10761 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) ∈ ℝ)
128106abscld 14898 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
129 1red 10732 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
130102abscld 14898 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ∈ ℝ)
131102absge0d 14906 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐹𝑧)))
13216adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
133 elioore 12863 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
134133adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
135132, 134remulcld 10761 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℝ)
136 abssinbd 42412 . . . . . . . . . . . . . . . 16 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
137135, 136syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
138128, 129, 130, 131, 137lemul2ad 11670 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
139138adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
140139adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
141 0le1 11253 . . . . . . . . . . . . . 14 0 ≤ 1
142141a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 0 ≤ 1)
143 simpr 488 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ≤ 𝑦)
144117, 126, 124, 142, 143lemul1ad 11669 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ≤ (𝑦 · 1))
145123, 125, 127, 140, 144letrd 10887 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ (𝑦 · 1))
146113, 145eqbrtrd 5062 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ (𝑦 · 1))
147126recnd 10759 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℂ)
148147mulid1d 10748 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) = 𝑦)
149146, 148breqtrd 5066 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15073, 87, 92, 149syl21anc 837 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
151150ex 416 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15272, 151ralrimi 3129 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
153152ex 416 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
154153reximdva 3185 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15569, 154mpd 15 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15646, 50, 58, 155cnbdibl 43085 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ 𝐿1)
15711, 43cncfmpt1f 23678 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15840, 26, 27constcncfg 42995 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
159157, 158divcncf 24211 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
160159negcncfg 43004 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16136, 160mulcncf 24210 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
162 simpr 488 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
16316adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ)
16415rpne0d 12531 . . . . . . . 8 (𝜑𝑅 ≠ 0)
165164adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ≠ 0)
166162, 163, 165redivcld 11558 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝑅) ∈ ℝ)
167166adantr 484 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑦 / 𝑅) ∈ ℝ)
168 simpr 488 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
16933ffvelrnda 6873 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
17017adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
17176recnd 10759 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
172171adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
173170, 172mulcld 10751 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℂ)
174173coscld 15588 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
175164adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
176174, 170, 175divcld 11506 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
177176negcld 11074 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
178169, 177mulcld 10751 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
179178ralrimiva 3097 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
180179adantr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
181 dmmptg 6084 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
182180, 181syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
183168, 182eleqtrd 2836 . . . . . . . 8 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
184183ad4ant14 752 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
185 eqidd 2740 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
186 fveq2 6686 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
18795fveq2d 6690 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝑧)))
188187oveq1d 7197 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝑧)) / 𝑅))
189188negeqd 10970 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝑧)) / 𝑅))
190186, 189oveq12d 7200 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
191190adantl 485 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
19233ffvelrnda 6873 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
193105coscld 15588 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
194164adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
195193, 103, 194divcld 11506 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
196195negcld 11074 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
197192, 196mulcld 10751 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℂ)
198185, 191, 99, 197fvmptd 6794 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
199198fveq2d 6690 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
200199ad4ant14 752 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
20133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
202201ffvelrnda 6873 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
203202abscld 14898 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ∈ ℝ)
204 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
20517ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
206104ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
207205, 206mulcld 10751 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
208207coscld 15588 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
209164ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
210208, 205, 209divcld 11506 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
211210negcld 11074 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
212211abscld 14898 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℝ)
21315rprecred 12537 . . . . . . . . . . 11 (𝜑 → (1 / 𝑅) ∈ ℝ)
214213ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (1 / 𝑅) ∈ ℝ)
215202absge0d 14906 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐺𝑧)))
216211absge0d 14906 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)))
217186fveq2d 6690 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
218217breq1d 5050 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
219218rspccva 3528 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
220219adantll 714 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
221195absnegd 14911 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)))
222193, 103, 194absdivd 14917 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)))
22315rpge0d 12530 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑅)
22416, 223absidd 14884 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑅) = 𝑅)
225224oveq2d 7198 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
226225adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
227221, 222, 2263eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
228193abscld 14898 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ∈ ℝ)
22915adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ+)
230 abscosbd 42394 . . . . . . . . . . . . . 14 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
231135, 230syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
232228, 129, 229, 231lediv1dd 12584 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅) ≤ (1 / 𝑅))
233227, 232eqbrtrd 5062 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
234233ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
235203, 204, 212, 214, 215, 216, 220, 234lemul12ad 11672 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 · (1 / 𝑅)))
236192, 196absmuld 14916 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
237236ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
238204recnd 10759 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℂ)
239238, 205, 209divrecd 11509 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑦 / 𝑅) = (𝑦 · (1 / 𝑅)))
240235, 237, 2393brtr4d 5072 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 / 𝑅))
241200, 240eqbrtrd 5062 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
242184, 241syldan 594 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
243242ralrimiva 3097 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
244 breq2 5044 . . . . . . 7 (𝑤 = (𝑦 / 𝑅) → ((abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
245244ralbidv 3110 . . . . . 6 (𝑤 = (𝑦 / 𝑅) → (∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
246245rspcev 3529 . . . . 5 (((𝑦 / 𝑅) ∈ ℝ ∧ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
247167, 243, 246syl2anc 587 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
248 fourierdlem39.gbd . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
249247, 248r19.29a 3200 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
25046, 50, 161, 249cnbdibl 43085 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ 𝐿1)
2518oveq2d 7198 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
252 fourierdlem39.g . . . . 5 𝐺 = (ℝ D 𝐹)
253252eqcomi 2748 . . . 4 (ℝ D 𝐹) = 𝐺
254253a1i 11 . . 3 (𝜑 → (ℝ D 𝐹) = 𝐺)
255251, 254, 343eqtrd 2778 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
256 reelprrecn 10719 . . . . 5 ℝ ∈ {ℝ, ℂ}
257256a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
25817adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℂ)
259 recn 10717 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
260259adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
261258, 260mulcld 10751 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℂ)
262261coscld 15588 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
263164adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ 0)
264262, 258, 263divcld 11506 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
265264negcld 11074 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
26616adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℝ)
267 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
268266, 267remulcld 10761 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℝ)
269268resincld 15600 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
270269renegcld 11157 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → -(sin‘(𝑅 · 𝑥)) ∈ ℝ)
271270, 266remulcld 10761 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℝ)
272271, 266, 263redivcld 11558 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
273272renegcld 11157 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
274 recoscl 15598 . . . . . . . . 9 (𝑦 ∈ ℝ → (cos‘𝑦) ∈ ℝ)
275274adantl 485 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℝ)
276275recnd 10759 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℂ)
277 resincl 15597 . . . . . . . . 9 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
278277renegcld 11157 . . . . . . . 8 (𝑦 ∈ ℝ → -(sin‘𝑦) ∈ ℝ)
279278adantl 485 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → -(sin‘𝑦) ∈ ℝ)
280 1red 10732 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
281257dvmptid 24721 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
282257, 260, 280, 281, 17dvmptcmul 24728 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ (𝑅 · 1)))
283258mulid1d 10748 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 1) = 𝑅)
284283mpteq2dva 5135 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑅 · 1)) = (𝑥 ∈ ℝ ↦ 𝑅))
285282, 284eqtrd 2774 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ 𝑅))
286 dvcosre 43035 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦))
287286a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦)))
288 fveq2 6686 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → (cos‘𝑦) = (cos‘(𝑅 · 𝑥)))
289 fveq2 6686 . . . . . . . 8 (𝑦 = (𝑅 · 𝑥) → (sin‘𝑦) = (sin‘(𝑅 · 𝑥)))
290289negeqd 10970 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝑅 · 𝑥)))
291257, 257, 268, 266, 276, 279, 285, 287, 288, 290dvmptco 24736 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘(𝑅 · 𝑥)))) = (𝑥 ∈ ℝ ↦ (-(sin‘(𝑅 · 𝑥)) · 𝑅)))
292257, 262, 271, 291, 17, 164dvmptdivc 24729 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
293257, 264, 272, 292dvmptneg 24730 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
294 eqid 2739 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
295294tgioo2 23567 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
296 iccntr 23585 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2971, 2, 296syl2anc 587 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
298257, 265, 273, 293, 12, 295, 294, 297dvmptres2 24726 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
29980, 170mulneg1d 11183 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) = -((sin‘(𝑅 · 𝑥)) · 𝑅))
300299oveq1d 7197 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30180, 170mulcld 10751 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℂ)
302301, 170, 175divnegd 11519 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
303300, 302eqtr4d 2777 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
304303negeqd 10970 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
305301, 170, 175divcld 11506 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℂ)
306305negnegd 11078 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30780, 170, 175divcan4d 11512 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
308304, 306, 3073eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
309308mpteq2dva 5135 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
310298, 309eqtrd 2774 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
311 fveq2 6686 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
312 oveq2 7190 . . . . . . 7 (𝑥 = 𝐴 → (𝑅 · 𝑥) = (𝑅 · 𝐴))
313312fveq2d 6690 . . . . . 6 (𝑥 = 𝐴 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐴)))
314313oveq1d 7197 . . . . 5 (𝑥 = 𝐴 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐴)) / 𝑅))
315314negeqd 10970 . . . 4 (𝑥 = 𝐴 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐴)) / 𝑅))
316311, 315oveq12d 7200 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
317316adantl 485 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
318 fveq2 6686 . . . 4 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
319 oveq2 7190 . . . . . . 7 (𝑥 = 𝐵 → (𝑅 · 𝑥) = (𝑅 · 𝐵))
320319fveq2d 6690 . . . . . 6 (𝑥 = 𝐵 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐵)))
321320oveq1d 7197 . . . . 5 (𝑥 = 𝐵 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐵)) / 𝑅))
322321negeqd 10970 . . . 4 (𝑥 = 𝐵 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐵)) / 𝑅))
323318, 322oveq12d 7200 . . 3 (𝑥 = 𝐵 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
324323adantl 485 . 2 ((𝜑𝑥 = 𝐵) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
3251, 2, 3, 9, 30, 36, 44, 156, 250, 255, 310, 317, 324itgparts 24811 1 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  cdif 3850  wss 3853  {csn 4526  {cpr 4528   class class class wbr 5040  cmpt 5120  dom cdm 5535  ran crn 5536  wf 6345  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  1c1 10628   · cmul 10632  cle 10766  cmin 10960  -cneg 10961   / cdiv 11387  +crp 12484  (,)cioo 12833  [,]cicc 12836  abscabs 14695  sincsin 15521  cosccos 15522  TopOpenctopn 16810  topGenctg 16826  fldccnfld 20229  intcnt 21780  cnccncf 23640  volcvol 24227  citg 24382   D cdv 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cc 9947  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-symdif 4143  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-disj 5006  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-ofr 7438  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-omul 8148  df-er 8332  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-fi 8960  df-sup 8991  df-inf 8992  df-oi 9059  df-dju 9415  df-card 9453  df-acn 9456  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-xneg 12602  df-xadd 12603  df-xmul 12604  df-ioo 12837  df-ioc 12838  df-ico 12839  df-icc 12840  df-fz 12994  df-fzo 13137  df-fl 13265  df-mod 13341  df-seq 13473  df-exp 13534  df-fac 13738  df-bc 13767  df-hash 13795  df-shft 14528  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148  df-ef 15525  df-sin 15527  df-cos 15528  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-rest 16811  df-topn 16812  df-0g 16830  df-gsum 16831  df-topgen 16832  df-pt 16833  df-prds 16836  df-xrs 16890  df-qtop 16895  df-imas 16896  df-xps 16898  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-submnd 18085  df-mulg 18355  df-cntz 18577  df-cmn 19038  df-psmet 20221  df-xmet 20222  df-met 20223  df-bl 20224  df-mopn 20225  df-fbas 20226  df-fg 20227  df-cnfld 20230  df-top 21657  df-topon 21674  df-topsp 21696  df-bases 21709  df-cld 21782  df-ntr 21783  df-cls 21784  df-nei 21861  df-lp 21899  df-perf 21900  df-cn 21990  df-cnp 21991  df-haus 22078  df-cmp 22150  df-tx 22325  df-hmeo 22518  df-fil 22609  df-fm 22701  df-flim 22702  df-flf 22703  df-xms 23085  df-ms 23086  df-tms 23087  df-cncf 23642  df-ovol 24228  df-vol 24229  df-mbf 24383  df-itg1 24384  df-itg2 24385  df-ibl 24386  df-itg 24387  df-0p 24434  df-limc 24630  df-dv 24631
This theorem is referenced by:  fourierdlem73  43302
  Copyright terms: Public domain W3C validator