Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem39 Structured version   Visualization version   GIF version

Theorem fourierdlem39 46117
Description: Integration by parts of ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem39.a (𝜑𝐴 ∈ ℝ)
fourierdlem39.b (𝜑𝐵 ∈ ℝ)
fourierdlem39.aleb (𝜑𝐴𝐵)
fourierdlem39.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
fourierdlem39.g 𝐺 = (ℝ D 𝐹)
fourierdlem39.gcn (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem39.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem39.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
fourierdlem39 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fourierdlem39
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem39.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem39.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem39.aleb . 2 (𝜑𝐴𝐵)
4 fourierdlem39.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
5 cncff 24762 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
64, 5syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
76feqmptd 6911 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
87eqcomd 2735 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = 𝐹)
98, 4eqeltrd 2828 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 coscn 26331 . . . . . 6 cos ∈ (ℂ–cn→ℂ)
1110a1i 11 . . . . 5 (𝜑 → cos ∈ (ℂ–cn→ℂ))
121, 2iccssred 13371 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
13 ax-resscn 11101 . . . . . . . 8 ℝ ⊆ ℂ
1412, 13sstrdi 3956 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
15 fourierdlem39.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
1615rpred 12971 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
1716recnd 11178 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
18 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
1918a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
2014, 17, 19constcncfg 45843 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2114, 19idcncfg 45844 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2220, 21mulcncf 25322 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2311, 22cncfmpt1f 24783 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2415rpcnne0d 12980 . . . . . 6 (𝜑 → (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
25 eldifsn 4746 . . . . . 6 (𝑅 ∈ (ℂ ∖ {0}) ↔ (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
2624, 25sylibr 234 . . . . 5 (𝜑𝑅 ∈ (ℂ ∖ {0}))
27 difssd 4096 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
2814, 26, 27constcncfg 45843 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
2923, 28divcncf 25324 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3029negcncfg 45852 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
31 fourierdlem39.gcn . . . . . 6 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
32 cncff 24762 . . . . . 6 (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3331, 32syl 17 . . . . 5 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3433feqmptd 6911 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
3534eqcomd 2735 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) = 𝐺)
3635, 31eqeltrd 2828 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
37 sincn 26330 . . . 4 sin ∈ (ℂ–cn→ℂ)
3837a1i 11 . . 3 (𝜑 → sin ∈ (ℂ–cn→ℂ))
39 ioosscn 13345 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
4039a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
4140, 17, 19constcncfg 45843 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4240, 19idcncfg 45844 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑥) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4341, 42mulcncf 25322 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4438, 43cncfmpt1f 24783 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
45 ioombl 25442 . . . 4 (𝐴(,)𝐵) ∈ dom vol
4645a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
47 volioo 25446 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
481, 2, 3, 47syl3anc 1373 . . . 4 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
492, 1resubcld 11582 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
5048, 49eqeltrd 2828 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
51 eqid 2729 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))
52 ioossicc 13370 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5352a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
546adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553sselda 3943 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
5654, 55ffvelcdmd 7039 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
5751, 9, 53, 19, 56cncfmptssg 45842 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5857, 44mulcncf 25322 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
59 cniccbdd 25338 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
601, 2, 4, 59syl3anc 1373 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
61 nfra1 3259 . . . . . . . 8 𝑧𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
6252sseli 3939 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
63 rspa 3224 . . . . . . . . . 10 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6462, 63sylan2 593 . . . . . . . . 9 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6564ex 412 . . . . . . . 8 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → (𝑧 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑧)) ≤ 𝑦))
6661, 65ralrimi 3233 . . . . . . 7 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
6766a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6867reximdva 3146 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6960, 68mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
70 nfv 1914 . . . . . . . 8 𝑧(𝜑𝑦 ∈ ℝ)
71 nfra1 3259 . . . . . . . 8 𝑧𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
7270, 71nfan 1899 . . . . . . 7 𝑧((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
73 simpll 766 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (𝜑𝑦 ∈ ℝ))
74 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
7516adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
76 elioore 13312 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
7875, 77remulcld 11180 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℝ)
7978resincld 16087 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
8079recnd 11178 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℂ)
8156, 80mulcld 11170 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
8281ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
83 dmmptg 6203 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8584adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8674, 85eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
8786ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
88 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
8986adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
90 rspa 3224 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9188, 89, 90syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9291adantllr 719 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
93 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
94 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
95 oveq2 7377 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
9695fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (sin‘(𝑅 · 𝑥)) = (sin‘(𝑅 · 𝑧)))
9794, 96oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
9897adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
1006adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
10152, 99sselid 3941 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
102100, 101ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
10317adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
10439, 99sselid 3941 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
105103, 104mulcld 11170 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
106105sincld 16074 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
107102, 106mulcld 11170 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))) ∈ ℂ)
10893, 98, 99, 107fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
109108fveq2d 6844 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))))
110102, 106absmuld 15399 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
111109, 110eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
112111adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
113112adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
114 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝜑)
115 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ (𝐴(,)𝐵))
116114, 115, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝐹𝑧) ∈ ℂ)
117116abscld 15381 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ∈ ℝ)
11817ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑅 ∈ ℂ)
11939, 115sselid 3941 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ ℂ)
120118, 119mulcld 11170 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑅 · 𝑧) ∈ ℂ)
121120sincld 16074 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
122121abscld 15381 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
123117, 122remulcld 11180 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ∈ ℝ)
124 1red 11151 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 1 ∈ ℝ)
125117, 124remulcld 11180 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ∈ ℝ)
126 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℝ)
127126, 124remulcld 11180 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) ∈ ℝ)
128106abscld 15381 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
129 1red 11151 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
130102abscld 15381 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ∈ ℝ)
131102absge0d 15389 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐹𝑧)))
13216adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
133 elioore 13312 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
134133adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
135132, 134remulcld 11180 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℝ)
136 abssinbd 45266 . . . . . . . . . . . . . . . 16 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
137135, 136syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
138128, 129, 130, 131, 137lemul2ad 12099 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
139138adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
140139adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
141 0le1 11677 . . . . . . . . . . . . . 14 0 ≤ 1
142141a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 0 ≤ 1)
143 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ≤ 𝑦)
144117, 126, 124, 142, 143lemul1ad 12098 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ≤ (𝑦 · 1))
145123, 125, 127, 140, 144letrd 11307 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ (𝑦 · 1))
146113, 145eqbrtrd 5124 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ (𝑦 · 1))
147126recnd 11178 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℂ)
148147mulridd 11167 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) = 𝑦)
149146, 148breqtrd 5128 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15073, 87, 92, 149syl21anc 837 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
151150ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15272, 151ralrimi 3233 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
153152ex 412 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
154153reximdva 3146 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15569, 154mpd 15 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15646, 50, 58, 155cnbdibl 45933 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ 𝐿1)
15711, 43cncfmpt1f 24783 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15840, 26, 27constcncfg 45843 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
159157, 158divcncf 25324 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
160159negcncfg 45852 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16136, 160mulcncf 25322 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
162 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
16316adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ)
16415rpne0d 12976 . . . . . . . 8 (𝜑𝑅 ≠ 0)
165164adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ≠ 0)
166162, 163, 165redivcld 11986 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝑅) ∈ ℝ)
167166adantr 480 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑦 / 𝑅) ∈ ℝ)
168 simpr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
16933ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
17017adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
17176recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
172171adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
173170, 172mulcld 11170 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℂ)
174173coscld 16075 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
175164adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
176174, 170, 175divcld 11934 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
177176negcld 11496 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
178169, 177mulcld 11170 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
179178ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
180179adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
181 dmmptg 6203 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
182180, 181syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
183168, 182eleqtrd 2830 . . . . . . . 8 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
184183ad4ant14 752 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
185 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
186 fveq2 6840 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
18795fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝑧)))
188187oveq1d 7384 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝑧)) / 𝑅))
189188negeqd 11391 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝑧)) / 𝑅))
190186, 189oveq12d 7387 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
19233ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
193105coscld 16075 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
194164adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
195193, 103, 194divcld 11934 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
196195negcld 11496 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
197192, 196mulcld 11170 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℂ)
198185, 191, 99, 197fvmptd 6957 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
199198fveq2d 6844 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
200199ad4ant14 752 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
20133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
202201ffvelcdmda 7038 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
203202abscld 15381 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ∈ ℝ)
204 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
20517ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
206104ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
207205, 206mulcld 11170 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
208207coscld 16075 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
209164ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
210208, 205, 209divcld 11934 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
211210negcld 11496 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
212211abscld 15381 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℝ)
21315rprecred 12982 . . . . . . . . . . 11 (𝜑 → (1 / 𝑅) ∈ ℝ)
214213ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (1 / 𝑅) ∈ ℝ)
215202absge0d 15389 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐺𝑧)))
216211absge0d 15389 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)))
217186fveq2d 6844 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
218217breq1d 5112 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
219218rspccva 3584 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
220219adantll 714 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
221195absnegd 15394 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)))
222193, 103, 194absdivd 15400 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)))
22315rpge0d 12975 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑅)
22416, 223absidd 15365 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑅) = 𝑅)
225224oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
226225adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
227221, 222, 2263eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
228193abscld 15381 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ∈ ℝ)
22915adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ+)
230 abscosbd 45250 . . . . . . . . . . . . . 14 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
231135, 230syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
232228, 129, 229, 231lediv1dd 13029 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅) ≤ (1 / 𝑅))
233227, 232eqbrtrd 5124 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
234233ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
235203, 204, 212, 214, 215, 216, 220, 234lemul12ad 12101 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 · (1 / 𝑅)))
236192, 196absmuld 15399 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
237236ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
238204recnd 11178 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℂ)
239238, 205, 209divrecd 11937 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑦 / 𝑅) = (𝑦 · (1 / 𝑅)))
240235, 237, 2393brtr4d 5134 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 / 𝑅))
241200, 240eqbrtrd 5124 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
242184, 241syldan 591 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
243242ralrimiva 3125 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
244 breq2 5106 . . . . . . 7 (𝑤 = (𝑦 / 𝑅) → ((abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
245244ralbidv 3156 . . . . . 6 (𝑤 = (𝑦 / 𝑅) → (∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
246245rspcev 3585 . . . . 5 (((𝑦 / 𝑅) ∈ ℝ ∧ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
247167, 243, 246syl2anc 584 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
248 fourierdlem39.gbd . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
249247, 248r19.29a 3141 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
25046, 50, 161, 249cnbdibl 45933 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ 𝐿1)
2518oveq2d 7385 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
252 fourierdlem39.g . . . . 5 𝐺 = (ℝ D 𝐹)
253252eqcomi 2738 . . . 4 (ℝ D 𝐹) = 𝐺
254253a1i 11 . . 3 (𝜑 → (ℝ D 𝐹) = 𝐺)
255251, 254, 343eqtrd 2768 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
256 reelprrecn 11136 . . . . 5 ℝ ∈ {ℝ, ℂ}
257256a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
25817adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℂ)
259 recn 11134 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
260259adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
261258, 260mulcld 11170 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℂ)
262261coscld 16075 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
263164adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ 0)
264262, 258, 263divcld 11934 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
265264negcld 11496 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
26616adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℝ)
267 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
268266, 267remulcld 11180 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℝ)
269268resincld 16087 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
270269renegcld 11581 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → -(sin‘(𝑅 · 𝑥)) ∈ ℝ)
271270, 266remulcld 11180 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℝ)
272271, 266, 263redivcld 11986 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
273272renegcld 11581 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
274 recoscl 16085 . . . . . . . . 9 (𝑦 ∈ ℝ → (cos‘𝑦) ∈ ℝ)
275274adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℝ)
276275recnd 11178 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℂ)
277 resincl 16084 . . . . . . . . 9 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
278277renegcld 11581 . . . . . . . 8 (𝑦 ∈ ℝ → -(sin‘𝑦) ∈ ℝ)
279278adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → -(sin‘𝑦) ∈ ℝ)
280 1red 11151 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
281257dvmptid 25837 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
282257, 260, 280, 281, 17dvmptcmul 25844 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ (𝑅 · 1)))
283258mulridd 11167 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 1) = 𝑅)
284283mpteq2dva 5195 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑅 · 1)) = (𝑥 ∈ ℝ ↦ 𝑅))
285282, 284eqtrd 2764 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ 𝑅))
286 dvcosre 45883 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦))
287286a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦)))
288 fveq2 6840 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → (cos‘𝑦) = (cos‘(𝑅 · 𝑥)))
289 fveq2 6840 . . . . . . . 8 (𝑦 = (𝑅 · 𝑥) → (sin‘𝑦) = (sin‘(𝑅 · 𝑥)))
290289negeqd 11391 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝑅 · 𝑥)))
291257, 257, 268, 266, 276, 279, 285, 287, 288, 290dvmptco 25852 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘(𝑅 · 𝑥)))) = (𝑥 ∈ ℝ ↦ (-(sin‘(𝑅 · 𝑥)) · 𝑅)))
292257, 262, 271, 291, 17, 164dvmptdivc 25845 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
293257, 264, 272, 292dvmptneg 25846 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
294 tgioo4 24669 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
295 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
296 iccntr 24686 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2971, 2, 296syl2anc 584 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
298257, 265, 273, 293, 12, 294, 295, 297dvmptres2 25842 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
29980, 170mulneg1d 11607 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) = -((sin‘(𝑅 · 𝑥)) · 𝑅))
300299oveq1d 7384 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30180, 170mulcld 11170 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℂ)
302301, 170, 175divnegd 11947 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
303300, 302eqtr4d 2767 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
304303negeqd 11391 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
305301, 170, 175divcld 11934 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℂ)
306305negnegd 11500 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30780, 170, 175divcan4d 11940 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
308304, 306, 3073eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
309308mpteq2dva 5195 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
310298, 309eqtrd 2764 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
311 fveq2 6840 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
312 oveq2 7377 . . . . . . 7 (𝑥 = 𝐴 → (𝑅 · 𝑥) = (𝑅 · 𝐴))
313312fveq2d 6844 . . . . . 6 (𝑥 = 𝐴 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐴)))
314313oveq1d 7384 . . . . 5 (𝑥 = 𝐴 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐴)) / 𝑅))
315314negeqd 11391 . . . 4 (𝑥 = 𝐴 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐴)) / 𝑅))
316311, 315oveq12d 7387 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
317316adantl 481 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
318 fveq2 6840 . . . 4 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
319 oveq2 7377 . . . . . . 7 (𝑥 = 𝐵 → (𝑅 · 𝑥) = (𝑅 · 𝐵))
320319fveq2d 6844 . . . . . 6 (𝑥 = 𝐵 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐵)))
321320oveq1d 7384 . . . . 5 (𝑥 = 𝐵 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐵)) / 𝑅))
322321negeqd 11391 . . . 4 (𝑥 = 𝐵 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐵)) / 𝑅))
323318, 322oveq12d 7387 . . 3 (𝑥 = 𝐵 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
324323adantl 481 . 2 ((𝜑𝑥 = 𝐵) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
3251, 2, 3, 9, 30, 36, 44, 156, 250, 255, 310, 317, 324itgparts 25930 1 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  wss 3911  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  +crp 12927  (,)cioo 13282  [,]cicc 13285  abscabs 15176  sincsin 16005  cosccos 16006  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  intcnt 22880  cnccncf 24745  volcvol 25340  citg 25495   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem73  46150
  Copyright terms: Public domain W3C validator