Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem39 Structured version   Visualization version   GIF version

Theorem fourierdlem39 44377
Description: Integration by parts of ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem39.a (𝜑𝐴 ∈ ℝ)
fourierdlem39.b (𝜑𝐵 ∈ ℝ)
fourierdlem39.aleb (𝜑𝐴𝐵)
fourierdlem39.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
fourierdlem39.g 𝐺 = (ℝ D 𝐹)
fourierdlem39.gcn (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem39.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem39.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
fourierdlem39 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fourierdlem39
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem39.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem39.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem39.aleb . 2 (𝜑𝐴𝐵)
4 fourierdlem39.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
5 cncff 24256 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
64, 5syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
76feqmptd 6910 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
87eqcomd 2742 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = 𝐹)
98, 4eqeltrd 2838 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 coscn 25804 . . . . . 6 cos ∈ (ℂ–cn→ℂ)
1110a1i 11 . . . . 5 (𝜑 → cos ∈ (ℂ–cn→ℂ))
121, 2iccssred 13351 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
13 ax-resscn 11108 . . . . . . . 8 ℝ ⊆ ℂ
1412, 13sstrdi 3956 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
15 fourierdlem39.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
1615rpred 12957 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
1716recnd 11183 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
18 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
1918a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
2014, 17, 19constcncfg 44103 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2114, 19idcncfg 44104 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2220, 21mulcncf 24810 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2311, 22cncfmpt1f 24277 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2415rpcnne0d 12966 . . . . . 6 (𝜑 → (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
25 eldifsn 4747 . . . . . 6 (𝑅 ∈ (ℂ ∖ {0}) ↔ (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
2624, 25sylibr 233 . . . . 5 (𝜑𝑅 ∈ (ℂ ∖ {0}))
27 difssd 4092 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
2814, 26, 27constcncfg 44103 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
2923, 28divcncf 24811 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3029negcncfg 44112 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
31 fourierdlem39.gcn . . . . . 6 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
32 cncff 24256 . . . . . 6 (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3331, 32syl 17 . . . . 5 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3433feqmptd 6910 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
3534eqcomd 2742 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) = 𝐺)
3635, 31eqeltrd 2838 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
37 sincn 25803 . . . 4 sin ∈ (ℂ–cn→ℂ)
3837a1i 11 . . 3 (𝜑 → sin ∈ (ℂ–cn→ℂ))
39 ioosscn 13326 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
4039a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
4140, 17, 19constcncfg 44103 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4240, 19idcncfg 44104 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑥) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4341, 42mulcncf 24810 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4438, 43cncfmpt1f 24277 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
45 ioombl 24929 . . . 4 (𝐴(,)𝐵) ∈ dom vol
4645a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
47 volioo 24933 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
481, 2, 3, 47syl3anc 1371 . . . 4 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
492, 1resubcld 11583 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
5048, 49eqeltrd 2838 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
51 eqid 2736 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))
52 ioossicc 13350 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5352a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
546adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553sselda 3944 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
5654, 55ffvelcdmd 7036 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
5751, 9, 53, 19, 56cncfmptssg 44102 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5857, 44mulcncf 24810 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
59 cniccbdd 24825 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
601, 2, 4, 59syl3anc 1371 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
61 nfra1 3267 . . . . . . . 8 𝑧𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
6252sseli 3940 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
63 rspa 3231 . . . . . . . . . 10 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6462, 63sylan2 593 . . . . . . . . 9 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6564ex 413 . . . . . . . 8 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → (𝑧 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑧)) ≤ 𝑦))
6661, 65ralrimi 3240 . . . . . . 7 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
6766a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6867reximdva 3165 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6960, 68mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
70 nfv 1917 . . . . . . . 8 𝑧(𝜑𝑦 ∈ ℝ)
71 nfra1 3267 . . . . . . . 8 𝑧𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
7270, 71nfan 1902 . . . . . . 7 𝑧((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
73 simpll 765 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (𝜑𝑦 ∈ ℝ))
74 simpr 485 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
7516adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
76 elioore 13294 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
7776adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
7875, 77remulcld 11185 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℝ)
7978resincld 16025 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
8079recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℂ)
8156, 80mulcld 11175 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
8281ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
83 dmmptg 6194 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8584adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8674, 85eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
8786ad4ant14 750 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
88 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
8986adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
90 rspa 3231 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9188, 89, 90syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9291adantllr 717 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
93 eqidd 2737 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
94 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
95 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
9695fveq2d 6846 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (sin‘(𝑅 · 𝑥)) = (sin‘(𝑅 · 𝑧)))
9794, 96oveq12d 7375 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
9897adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
99 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
1006adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
10152, 99sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
102100, 101ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
10317adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
10439, 99sselid 3942 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
105103, 104mulcld 11175 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
106105sincld 16012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
107102, 106mulcld 11175 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))) ∈ ℂ)
10893, 98, 99, 107fvmptd 6955 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
109108fveq2d 6846 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))))
110102, 106absmuld 15339 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
111109, 110eqtrd 2776 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
112111adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
113112adantr 481 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
114 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝜑)
115 simplr 767 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ (𝐴(,)𝐵))
116114, 115, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝐹𝑧) ∈ ℂ)
117116abscld 15321 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ∈ ℝ)
11817ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑅 ∈ ℂ)
11939, 115sselid 3942 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ ℂ)
120118, 119mulcld 11175 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑅 · 𝑧) ∈ ℂ)
121120sincld 16012 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
122121abscld 15321 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
123117, 122remulcld 11185 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ∈ ℝ)
124 1red 11156 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 1 ∈ ℝ)
125117, 124remulcld 11185 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ∈ ℝ)
126 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℝ)
127126, 124remulcld 11185 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) ∈ ℝ)
128106abscld 15321 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
129 1red 11156 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
130102abscld 15321 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ∈ ℝ)
131102absge0d 15329 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐹𝑧)))
13216adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
133 elioore 13294 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
134133adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
135132, 134remulcld 11185 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℝ)
136 abssinbd 43519 . . . . . . . . . . . . . . . 16 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
137135, 136syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
138128, 129, 130, 131, 137lemul2ad 12095 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
139138adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
140139adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
141 0le1 11678 . . . . . . . . . . . . . 14 0 ≤ 1
142141a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 0 ≤ 1)
143 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ≤ 𝑦)
144117, 126, 124, 142, 143lemul1ad 12094 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ≤ (𝑦 · 1))
145123, 125, 127, 140, 144letrd 11312 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ (𝑦 · 1))
146113, 145eqbrtrd 5127 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ (𝑦 · 1))
147126recnd 11183 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℂ)
148147mulid1d 11172 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) = 𝑦)
149146, 148breqtrd 5131 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15073, 87, 92, 149syl21anc 836 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
151150ex 413 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15272, 151ralrimi 3240 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
153152ex 413 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
154153reximdva 3165 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15569, 154mpd 15 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15646, 50, 58, 155cnbdibl 44193 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ 𝐿1)
15711, 43cncfmpt1f 24277 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15840, 26, 27constcncfg 44103 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
159157, 158divcncf 24811 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
160159negcncfg 44112 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16136, 160mulcncf 24810 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
162 simpr 485 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
16316adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ)
16415rpne0d 12962 . . . . . . . 8 (𝜑𝑅 ≠ 0)
165164adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ≠ 0)
166162, 163, 165redivcld 11983 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝑅) ∈ ℝ)
167166adantr 481 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑦 / 𝑅) ∈ ℝ)
168 simpr 485 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
16933ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
17017adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
17176recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
172171adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
173170, 172mulcld 11175 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℂ)
174173coscld 16013 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
175164adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
176174, 170, 175divcld 11931 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
177176negcld 11499 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
178169, 177mulcld 11175 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
179178ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
180179adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
181 dmmptg 6194 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
182180, 181syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
183168, 182eleqtrd 2840 . . . . . . . 8 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
184183ad4ant14 750 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
185 eqidd 2737 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
186 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
18795fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝑧)))
188187oveq1d 7372 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝑧)) / 𝑅))
189188negeqd 11395 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝑧)) / 𝑅))
190186, 189oveq12d 7375 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
191190adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
19233ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
193105coscld 16013 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
194164adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
195193, 103, 194divcld 11931 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
196195negcld 11499 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
197192, 196mulcld 11175 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℂ)
198185, 191, 99, 197fvmptd 6955 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
199198fveq2d 6846 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
200199ad4ant14 750 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
20133ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
202201ffvelcdmda 7035 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
203202abscld 15321 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ∈ ℝ)
204 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
20517ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
206104ad4ant14 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
207205, 206mulcld 11175 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
208207coscld 16013 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
209164ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
210208, 205, 209divcld 11931 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
211210negcld 11499 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
212211abscld 15321 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℝ)
21315rprecred 12968 . . . . . . . . . . 11 (𝜑 → (1 / 𝑅) ∈ ℝ)
214213ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (1 / 𝑅) ∈ ℝ)
215202absge0d 15329 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐺𝑧)))
216211absge0d 15329 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)))
217186fveq2d 6846 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
218217breq1d 5115 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
219218rspccva 3580 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
220219adantll 712 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
221195absnegd 15334 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)))
222193, 103, 194absdivd 15340 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)))
22315rpge0d 12961 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑅)
22416, 223absidd 15307 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑅) = 𝑅)
225224oveq2d 7373 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
226225adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
227221, 222, 2263eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
228193abscld 15321 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ∈ ℝ)
22915adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ+)
230 abscosbd 43502 . . . . . . . . . . . . . 14 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
231135, 230syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
232228, 129, 229, 231lediv1dd 13015 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅) ≤ (1 / 𝑅))
233227, 232eqbrtrd 5127 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
234233ad4ant14 750 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
235203, 204, 212, 214, 215, 216, 220, 234lemul12ad 12097 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 · (1 / 𝑅)))
236192, 196absmuld 15339 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
237236ad4ant14 750 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
238204recnd 11183 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℂ)
239238, 205, 209divrecd 11934 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑦 / 𝑅) = (𝑦 · (1 / 𝑅)))
240235, 237, 2393brtr4d 5137 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 / 𝑅))
241200, 240eqbrtrd 5127 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
242184, 241syldan 591 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
243242ralrimiva 3143 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
244 breq2 5109 . . . . . . 7 (𝑤 = (𝑦 / 𝑅) → ((abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
245244ralbidv 3174 . . . . . 6 (𝑤 = (𝑦 / 𝑅) → (∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
246245rspcev 3581 . . . . 5 (((𝑦 / 𝑅) ∈ ℝ ∧ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
247167, 243, 246syl2anc 584 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
248 fourierdlem39.gbd . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
249247, 248r19.29a 3159 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
25046, 50, 161, 249cnbdibl 44193 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ 𝐿1)
2518oveq2d 7373 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
252 fourierdlem39.g . . . . 5 𝐺 = (ℝ D 𝐹)
253252eqcomi 2745 . . . 4 (ℝ D 𝐹) = 𝐺
254253a1i 11 . . 3 (𝜑 → (ℝ D 𝐹) = 𝐺)
255251, 254, 343eqtrd 2780 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
256 reelprrecn 11143 . . . . 5 ℝ ∈ {ℝ, ℂ}
257256a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
25817adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℂ)
259 recn 11141 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
260259adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
261258, 260mulcld 11175 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℂ)
262261coscld 16013 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
263164adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ 0)
264262, 258, 263divcld 11931 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
265264negcld 11499 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
26616adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℝ)
267 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
268266, 267remulcld 11185 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℝ)
269268resincld 16025 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
270269renegcld 11582 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → -(sin‘(𝑅 · 𝑥)) ∈ ℝ)
271270, 266remulcld 11185 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℝ)
272271, 266, 263redivcld 11983 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
273272renegcld 11582 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
274 recoscl 16023 . . . . . . . . 9 (𝑦 ∈ ℝ → (cos‘𝑦) ∈ ℝ)
275274adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℝ)
276275recnd 11183 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℂ)
277 resincl 16022 . . . . . . . . 9 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
278277renegcld 11582 . . . . . . . 8 (𝑦 ∈ ℝ → -(sin‘𝑦) ∈ ℝ)
279278adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → -(sin‘𝑦) ∈ ℝ)
280 1red 11156 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
281257dvmptid 25321 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
282257, 260, 280, 281, 17dvmptcmul 25328 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ (𝑅 · 1)))
283258mulid1d 11172 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 1) = 𝑅)
284283mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑅 · 1)) = (𝑥 ∈ ℝ ↦ 𝑅))
285282, 284eqtrd 2776 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ 𝑅))
286 dvcosre 44143 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦))
287286a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦)))
288 fveq2 6842 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → (cos‘𝑦) = (cos‘(𝑅 · 𝑥)))
289 fveq2 6842 . . . . . . . 8 (𝑦 = (𝑅 · 𝑥) → (sin‘𝑦) = (sin‘(𝑅 · 𝑥)))
290289negeqd 11395 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝑅 · 𝑥)))
291257, 257, 268, 266, 276, 279, 285, 287, 288, 290dvmptco 25336 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘(𝑅 · 𝑥)))) = (𝑥 ∈ ℝ ↦ (-(sin‘(𝑅 · 𝑥)) · 𝑅)))
292257, 262, 271, 291, 17, 164dvmptdivc 25329 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
293257, 264, 272, 292dvmptneg 25330 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
294 eqid 2736 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
295294tgioo2 24166 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
296 iccntr 24184 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2971, 2, 296syl2anc 584 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
298257, 265, 273, 293, 12, 295, 294, 297dvmptres2 25326 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
29980, 170mulneg1d 11608 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) = -((sin‘(𝑅 · 𝑥)) · 𝑅))
300299oveq1d 7372 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30180, 170mulcld 11175 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℂ)
302301, 170, 175divnegd 11944 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
303300, 302eqtr4d 2779 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
304303negeqd 11395 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
305301, 170, 175divcld 11931 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℂ)
306305negnegd 11503 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30780, 170, 175divcan4d 11937 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
308304, 306, 3073eqtrd 2780 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
309308mpteq2dva 5205 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
310298, 309eqtrd 2776 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
311 fveq2 6842 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
312 oveq2 7365 . . . . . . 7 (𝑥 = 𝐴 → (𝑅 · 𝑥) = (𝑅 · 𝐴))
313312fveq2d 6846 . . . . . 6 (𝑥 = 𝐴 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐴)))
314313oveq1d 7372 . . . . 5 (𝑥 = 𝐴 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐴)) / 𝑅))
315314negeqd 11395 . . . 4 (𝑥 = 𝐴 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐴)) / 𝑅))
316311, 315oveq12d 7375 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
317316adantl 482 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
318 fveq2 6842 . . . 4 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
319 oveq2 7365 . . . . . . 7 (𝑥 = 𝐵 → (𝑅 · 𝑥) = (𝑅 · 𝐵))
320319fveq2d 6846 . . . . . 6 (𝑥 = 𝐵 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐵)))
321320oveq1d 7372 . . . . 5 (𝑥 = 𝐵 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐵)) / 𝑅))
322321negeqd 11395 . . . 4 (𝑥 = 𝐵 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐵)) / 𝑅))
323318, 322oveq12d 7375 . . 3 (𝑥 = 𝐵 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
324323adantl 482 . 2 ((𝜑𝑥 = 𝐵) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
3251, 2, 3, 9, 30, 36, 44, 156, 250, 255, 310, 317, 324itgparts 25411 1 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  +crp 12915  (,)cioo 13264  [,]cicc 13267  abscabs 15119  sincsin 15946  cosccos 15947  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368  cnccncf 24239  volcvol 24827  citg 24982   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem73  44410
  Copyright terms: Public domain W3C validator