MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcn2 Structured version   Visualization version   GIF version

Theorem metdcn2 24773
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
metdcn2.2 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
metdcn2 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem metdcn2
StepHypRef Expression
1 metxmet 24258 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetdcn2.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
3 eqid 2727 . . . . 5 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
42, 3xmetdcn 24772 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn (ordTop‘ ≤ )))
51, 4syl 17 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn (ordTop‘ ≤ )))
6 letopon 23127 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 metf 24254 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
87frnd 6733 . . . 4 (𝐷 ∈ (Met‘𝑋) → ran 𝐷 ⊆ ℝ)
9 ressxr 11294 . . . . 5 ℝ ⊆ ℝ*
109a1i 11 . . . 4 (𝐷 ∈ (Met‘𝑋) → ℝ ⊆ ℝ*)
11 cnrest2 23208 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐷 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn (ordTop‘ ≤ )) ↔ 𝐷 ∈ ((𝐽 ×t 𝐽) Cn ((ordTop‘ ≤ ) ↾t ℝ))))
126, 8, 10, 11mp3an2i 1462 . . 3 (𝐷 ∈ (Met‘𝑋) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn (ordTop‘ ≤ )) ↔ 𝐷 ∈ ((𝐽 ×t 𝐽) Cn ((ordTop‘ ≤ ) ↾t ℝ))))
135, 12mpbid 231 . 2 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn ((ordTop‘ ≤ ) ↾t ℝ)))
14 metdcn2.2 . . . 4 𝐾 = (topGen‘ran (,))
15 eqid 2727 . . . . 5 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1615xrtgioo 24740 . . . 4 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
1714, 16eqtri 2755 . . 3 𝐾 = ((ordTop‘ ≤ ) ↾t ℝ)
1817oveq2i 7435 . 2 ((𝐽 ×t 𝐽) Cn 𝐾) = ((𝐽 ×t 𝐽) Cn ((ordTop‘ ≤ ) ↾t ℝ))
1913, 18eleqtrrdi 2839 1 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wss 3947   × cxp 5678  ran crn 5681  cfv 6551  (class class class)co 7424  cr 11143  *cxr 11283  cle 11285  (,)cioo 13362  t crest 17407  topGenctg 17424  ordTopcordt 17486  ∞Metcxmet 21269  Metcmet 21270  MetOpencmopn 21274  TopOnctopon 22830   Cn ccn 23146   ×t ctx 23482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-ec 8731  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-fi 9440  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-hom 17262  df-cco 17263  df-rest 17409  df-topn 17410  df-0g 17428  df-gsum 17429  df-topgen 17430  df-pt 17431  df-prds 17434  df-ordt 17488  df-xrs 17489  df-qtop 17494  df-imas 17495  df-xps 17497  df-mre 17571  df-mrc 17572  df-acs 17574  df-ps 18563  df-tsr 18564  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18746  df-mulg 19029  df-cntz 19273  df-cmn 19742  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-cn 23149  df-cnp 23150  df-tx 23484  df-hmeo 23677  df-xms 24244  df-tms 24246
This theorem is referenced by:  metdcn  24774  msdcn  24775
  Copyright terms: Public domain W3C validator