Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version |
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
lmlimxrge0.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
lmlimxrge0.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmlimxrge0.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
lmlimxrge0.x | ⊢ 𝑋 ⊆ (0[,)+∞) |
Ref | Expression |
---|---|
lmlimxrge0 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlimxrge0.j | . . . 4 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | xrge0topn 31795 | . . . 4 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
3 | 1, 2 | eqtri 2766 | . . 3 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
4 | letopon 22264 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
5 | iccssxr 13091 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | resttopon 22220 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))) | |
7 | 4, 5, 6 | mp2an 688 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)) |
8 | 3, 7 | eqeltri 2835 | . 2 ⊢ 𝐽 ∈ (TopOn‘(0[,]+∞)) |
9 | lmlimxrge0.f | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
10 | lmlimxrge0.p | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
11 | fvex 6769 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ V | |
12 | lmlimxrge0.x | . . . . 5 ⊢ 𝑋 ⊆ (0[,)+∞) | |
13 | icossicc 13097 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
14 | 12, 13 | sstri 3926 | . . . 4 ⊢ 𝑋 ⊆ (0[,]+∞) |
15 | ovex 7288 | . . . 4 ⊢ (0[,]+∞) ∈ V | |
16 | restabs 22224 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) | |
17 | 11, 14, 15, 16 | mp3an 1459 | . . 3 ⊢ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
18 | 3 | oveq1i 7265 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) |
19 | rge0ssre 13117 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
20 | 12, 19 | sstri 3926 | . . . 4 ⊢ 𝑋 ⊆ ℝ |
21 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | eqid 2738 | . . . . 5 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
23 | 21, 22 | xrrest2 23877 | . . . 4 ⊢ (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) |
24 | 20, 23 | ax-mp 5 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
25 | 17, 18, 24 | 3eqtr4i 2776 | . 2 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
26 | ax-resscn 10859 | . . 3 ⊢ ℝ ⊆ ℂ | |
27 | 20, 26 | sstri 3926 | . 2 ⊢ 𝑋 ⊆ ℂ |
28 | 8, 9, 10, 25, 27 | lmlim 31799 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 ℕcn 11903 [,)cico 13010 [,]cicc 13011 ⇝ cli 15121 ↾s cress 16867 ↾t crest 17048 TopOpenctopn 17049 ordTopcordt 17127 ℝ*𝑠cxrs 17128 ℂfldccnfld 20510 TopOnctopon 21967 ⇝𝑡clm 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-ps 18199 df-tsr 18200 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-lm 22288 df-xms 23381 df-ms 23382 |
This theorem is referenced by: esumcvg 31954 dstfrvclim1 32344 |
Copyright terms: Public domain | W3C validator |