Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version |
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
lmlimxrge0.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
lmlimxrge0.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmlimxrge0.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
lmlimxrge0.x | ⊢ 𝑋 ⊆ (0[,)+∞) |
Ref | Expression |
---|---|
lmlimxrge0 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlimxrge0.j | . . . 4 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | xrge0topn 31921 | . . . 4 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
3 | 1, 2 | eqtri 2761 | . . 3 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
4 | letopon 22384 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
5 | iccssxr 13190 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | resttopon 22340 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))) | |
7 | 4, 5, 6 | mp2an 688 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)) |
8 | 3, 7 | eqeltri 2830 | . 2 ⊢ 𝐽 ∈ (TopOn‘(0[,]+∞)) |
9 | lmlimxrge0.f | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
10 | lmlimxrge0.p | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
11 | fvex 6805 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ V | |
12 | lmlimxrge0.x | . . . . 5 ⊢ 𝑋 ⊆ (0[,)+∞) | |
13 | icossicc 13196 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
14 | 12, 13 | sstri 3932 | . . . 4 ⊢ 𝑋 ⊆ (0[,]+∞) |
15 | ovex 7328 | . . . 4 ⊢ (0[,]+∞) ∈ V | |
16 | restabs 22344 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) | |
17 | 11, 14, 15, 16 | mp3an 1459 | . . 3 ⊢ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
18 | 3 | oveq1i 7305 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) |
19 | rge0ssre 13216 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
20 | 12, 19 | sstri 3932 | . . . 4 ⊢ 𝑋 ⊆ ℝ |
21 | eqid 2733 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | eqid 2733 | . . . . 5 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
23 | 21, 22 | xrrest2 23999 | . . . 4 ⊢ (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) |
24 | 20, 23 | ax-mp 5 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
25 | 17, 18, 24 | 3eqtr4i 2771 | . 2 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
26 | ax-resscn 10956 | . . 3 ⊢ ℝ ⊆ ℂ | |
27 | 20, 26 | sstri 3932 | . 2 ⊢ 𝑋 ⊆ ℂ |
28 | 8, 9, 10, 25, 27 | lmlim 31925 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ⊆ wss 3889 class class class wbr 5077 ⟶wf 6443 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 ℝcr 10898 0cc0 10899 +∞cpnf 11034 ℝ*cxr 11036 ≤ cle 11038 ℕcn 12001 [,)cico 13109 [,]cicc 13110 ⇝ cli 15221 ↾s cress 16969 ↾t crest 17159 TopOpenctopn 17160 ordTopcordt 17238 ℝ*𝑠cxrs 17239 ℂfldccnfld 20625 TopOnctopon 22087 ⇝𝑡clm 22405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-pm 8638 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fi 9198 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-ioo 13111 df-ioc 13112 df-ico 13113 df-icc 13114 df-fz 13268 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-rest 17161 df-topn 17162 df-topgen 17182 df-ordt 17240 df-xrs 17241 df-ps 18312 df-tsr 18313 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-cnfld 20626 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-lm 22408 df-xms 23501 df-ms 23502 |
This theorem is referenced by: esumcvg 32082 dstfrvclim1 32472 |
Copyright terms: Public domain | W3C validator |