| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version | ||
| Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| lmlimxrge0.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| lmlimxrge0.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmlimxrge0.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| lmlimxrge0.x | ⊢ 𝑋 ⊆ (0[,)+∞) |
| Ref | Expression |
|---|---|
| lmlimxrge0 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmlimxrge0.j | . . . 4 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | xrge0topn 33951 | . . . 4 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 3 | 1, 2 | eqtri 2754 | . . 3 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| 4 | letopon 23118 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 5 | iccssxr 13327 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 6 | resttopon 23074 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)) |
| 8 | 3, 7 | eqeltri 2827 | . 2 ⊢ 𝐽 ∈ (TopOn‘(0[,]+∞)) |
| 9 | lmlimxrge0.f | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 10 | lmlimxrge0.p | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
| 11 | fvex 6835 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ V | |
| 12 | lmlimxrge0.x | . . . . 5 ⊢ 𝑋 ⊆ (0[,)+∞) | |
| 13 | icossicc 13333 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 14 | 12, 13 | sstri 3944 | . . . 4 ⊢ 𝑋 ⊆ (0[,]+∞) |
| 15 | ovex 7379 | . . . 4 ⊢ (0[,]+∞) ∈ V | |
| 16 | restabs 23078 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) | |
| 17 | 11, 14, 15, 16 | mp3an 1463 | . . 3 ⊢ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
| 18 | 3 | oveq1i 7356 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) |
| 19 | rge0ssre 13353 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 20 | 12, 19 | sstri 3944 | . . . 4 ⊢ 𝑋 ⊆ ℝ |
| 21 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | eqid 2731 | . . . . 5 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
| 23 | 21, 22 | xrrest2 24722 | . . . 4 ⊢ (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) |
| 24 | 20, 23 | ax-mp 5 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
| 25 | 17, 18, 24 | 3eqtr4i 2764 | . 2 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
| 26 | ax-resscn 11060 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 27 | 20, 26 | sstri 3944 | . 2 ⊢ 𝑋 ⊆ ℂ |
| 28 | 8, 9, 10, 25, 27 | lmlim 33955 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 +∞cpnf 11140 ℝ*cxr 11142 ≤ cle 11144 ℕcn 12122 [,)cico 13244 [,]cicc 13245 ⇝ cli 15388 ↾s cress 17138 ↾t crest 17321 TopOpenctopn 17322 ordTopcordt 17400 ℝ*𝑠cxrs 17401 ℂfldccnfld 21289 TopOnctopon 22823 ⇝𝑡clm 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-topgen 17344 df-ordt 17402 df-xrs 17403 df-ps 18469 df-tsr 18470 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-lm 23142 df-xms 24233 df-ms 24234 |
| This theorem is referenced by: esumcvg 34094 dstfrvclim1 34486 |
| Copyright terms: Public domain | W3C validator |