![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version |
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
lmlimxrge0.j | β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) |
lmlimxrge0.f | β’ (π β πΉ:ββΆπ) |
lmlimxrge0.p | β’ (π β π β π) |
lmlimxrge0.x | β’ π β (0[,)+β) |
Ref | Expression |
---|---|
lmlimxrge0 | β’ (π β (πΉ(βπ‘βπ½)π β πΉ β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlimxrge0.j | . . . 4 β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) | |
2 | xrge0topn 32918 | . . . 4 β’ (TopOpenβ(β*π βΎs (0[,]+β))) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
3 | 1, 2 | eqtri 2760 | . . 3 β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) |
4 | letopon 22708 | . . . 4 β’ (ordTopβ β€ ) β (TopOnββ*) | |
5 | iccssxr 13406 | . . . 4 β’ (0[,]+β) β β* | |
6 | resttopon 22664 | . . . 4 β’ (((ordTopβ β€ ) β (TopOnββ*) β§ (0[,]+β) β β*) β ((ordTopβ β€ ) βΎt (0[,]+β)) β (TopOnβ(0[,]+β))) | |
7 | 4, 5, 6 | mp2an 690 | . . 3 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) β (TopOnβ(0[,]+β)) |
8 | 3, 7 | eqeltri 2829 | . 2 β’ π½ β (TopOnβ(0[,]+β)) |
9 | lmlimxrge0.f | . 2 β’ (π β πΉ:ββΆπ) | |
10 | lmlimxrge0.p | . 2 β’ (π β π β π) | |
11 | fvex 6904 | . . . 4 β’ (ordTopβ β€ ) β V | |
12 | lmlimxrge0.x | . . . . 5 β’ π β (0[,)+β) | |
13 | icossicc 13412 | . . . . 5 β’ (0[,)+β) β (0[,]+β) | |
14 | 12, 13 | sstri 3991 | . . . 4 β’ π β (0[,]+β) |
15 | ovex 7441 | . . . 4 β’ (0[,]+β) β V | |
16 | restabs 22668 | . . . 4 β’ (((ordTopβ β€ ) β V β§ π β (0[,]+β) β§ (0[,]+β) β V) β (((ordTopβ β€ ) βΎt (0[,]+β)) βΎt π) = ((ordTopβ β€ ) βΎt π)) | |
17 | 11, 14, 15, 16 | mp3an 1461 | . . 3 β’ (((ordTopβ β€ ) βΎt (0[,]+β)) βΎt π) = ((ordTopβ β€ ) βΎt π) |
18 | 3 | oveq1i 7418 | . . 3 β’ (π½ βΎt π) = (((ordTopβ β€ ) βΎt (0[,]+β)) βΎt π) |
19 | rge0ssre 13432 | . . . . 5 β’ (0[,)+β) β β | |
20 | 12, 19 | sstri 3991 | . . . 4 β’ π β β |
21 | eqid 2732 | . . . . 5 β’ (TopOpenββfld) = (TopOpenββfld) | |
22 | eqid 2732 | . . . . 5 β’ (ordTopβ β€ ) = (ordTopβ β€ ) | |
23 | 21, 22 | xrrest2 24323 | . . . 4 β’ (π β β β ((TopOpenββfld) βΎt π) = ((ordTopβ β€ ) βΎt π)) |
24 | 20, 23 | ax-mp 5 | . . 3 β’ ((TopOpenββfld) βΎt π) = ((ordTopβ β€ ) βΎt π) |
25 | 17, 18, 24 | 3eqtr4i 2770 | . 2 β’ (π½ βΎt π) = ((TopOpenββfld) βΎt π) |
26 | ax-resscn 11166 | . . 3 β’ β β β | |
27 | 20, 26 | sstri 3991 | . 2 β’ π β β |
28 | 8, 9, 10, 25, 27 | lmlim 32922 | 1 β’ (π β (πΉ(βπ‘βπ½)π β πΉ β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 0cc0 11109 +βcpnf 11244 β*cxr 11246 β€ cle 11248 βcn 12211 [,)cico 13325 [,]cicc 13326 β cli 15427 βΎs cress 17172 βΎt crest 17365 TopOpenctopn 17366 ordTopcordt 17444 β*π cxrs 17445 βfldccnfld 20943 TopOnctopon 22411 βπ‘clm 22729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-topgen 17388 df-ordt 17446 df-xrs 17447 df-ps 18518 df-tsr 18519 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-lm 22732 df-xms 23825 df-ms 23826 |
This theorem is referenced by: esumcvg 33079 dstfrvclim1 33471 |
Copyright terms: Public domain | W3C validator |