Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmlimxrge0 Structured version   Visualization version   GIF version

Theorem lmlimxrge0 33894
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
lmlimxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmlimxrge0.f (𝜑𝐹:ℕ⟶𝑋)
lmlimxrge0.p (𝜑𝑃𝑋)
lmlimxrge0.x 𝑋 ⊆ (0[,)+∞)
Assertion
Ref Expression
lmlimxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))

Proof of Theorem lmlimxrge0
StepHypRef Expression
1 lmlimxrge0.j . . . 4 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0topn 33889 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2eqtri 2768 . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4 letopon 23234 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
5 iccssxr 13490 . . . 4 (0[,]+∞) ⊆ ℝ*
6 resttopon 23190 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
74, 5, 6mp2an 691 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
83, 7eqeltri 2840 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
9 lmlimxrge0.f . 2 (𝜑𝐹:ℕ⟶𝑋)
10 lmlimxrge0.p . 2 (𝜑𝑃𝑋)
11 fvex 6933 . . . 4 (ordTop‘ ≤ ) ∈ V
12 lmlimxrge0.x . . . . 5 𝑋 ⊆ (0[,)+∞)
13 icossicc 13496 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
1412, 13sstri 4018 . . . 4 𝑋 ⊆ (0[,]+∞)
15 ovex 7481 . . . 4 (0[,]+∞) ∈ V
16 restabs 23194 . . . 4 (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
1711, 14, 15, 16mp3an 1461 . . 3 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
183oveq1i 7458 . . 3 (𝐽t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋)
19 rge0ssre 13516 . . . . 5 (0[,)+∞) ⊆ ℝ
2012, 19sstri 4018 . . . 4 𝑋 ⊆ ℝ
21 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 eqid 2740 . . . . 5 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2321, 22xrrest2 24849 . . . 4 (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
2420, 23ax-mp 5 . . 3 ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
2517, 18, 243eqtr4i 2778 . 2 (𝐽t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
26 ax-resscn 11241 . . 3 ℝ ⊆ ℂ
2720, 26sstri 4018 . 2 𝑋 ⊆ ℂ
288, 9, 10, 25, 27lmlim 33893 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323  cle 11325  cn 12293  [,)cico 13409  [,]cicc 13410  cli 15530  s cress 17287  t crest 17480  TopOpenctopn 17481  ordTopcordt 17559  *𝑠cxrs 17560  fldccnfld 21387  TopOnctopon 22937  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-ps 18636  df-tsr 18637  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-lm 23258  df-xms 24351  df-ms 24352
This theorem is referenced by:  esumcvg  34050  dstfrvclim1  34442
  Copyright terms: Public domain W3C validator