| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version | ||
| Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| lmlimxrge0.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| lmlimxrge0.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmlimxrge0.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| lmlimxrge0.x | ⊢ 𝑋 ⊆ (0[,)+∞) |
| Ref | Expression |
|---|---|
| lmlimxrge0 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmlimxrge0.j | . . . 4 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | xrge0topn 33909 | . . . 4 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 3 | 1, 2 | eqtri 2752 | . . 3 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| 4 | letopon 23108 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 5 | iccssxr 13351 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 6 | resttopon 23064 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)) |
| 8 | 3, 7 | eqeltri 2824 | . 2 ⊢ 𝐽 ∈ (TopOn‘(0[,]+∞)) |
| 9 | lmlimxrge0.f | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 10 | lmlimxrge0.p | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
| 11 | fvex 6839 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ V | |
| 12 | lmlimxrge0.x | . . . . 5 ⊢ 𝑋 ⊆ (0[,)+∞) | |
| 13 | icossicc 13357 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 14 | 12, 13 | sstri 3947 | . . . 4 ⊢ 𝑋 ⊆ (0[,]+∞) |
| 15 | ovex 7386 | . . . 4 ⊢ (0[,]+∞) ∈ V | |
| 16 | restabs 23068 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) | |
| 17 | 11, 14, 15, 16 | mp3an 1463 | . . 3 ⊢ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
| 18 | 3 | oveq1i 7363 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) |
| 19 | rge0ssre 13377 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 20 | 12, 19 | sstri 3947 | . . . 4 ⊢ 𝑋 ⊆ ℝ |
| 21 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | eqid 2729 | . . . . 5 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
| 23 | 21, 22 | xrrest2 24713 | . . . 4 ⊢ (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) |
| 24 | 20, 23 | ax-mp 5 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
| 25 | 17, 18, 24 | 3eqtr4i 2762 | . 2 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
| 26 | ax-resscn 11085 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 27 | 20, 26 | sstri 3947 | . 2 ⊢ 𝑋 ⊆ ℂ |
| 28 | 8, 9, 10, 25, 27 | lmlim 33913 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 ℕcn 12146 [,)cico 13268 [,]cicc 13269 ⇝ cli 15409 ↾s cress 17159 ↾t crest 17342 TopOpenctopn 17343 ordTopcordt 17421 ℝ*𝑠cxrs 17422 ℂfldccnfld 21279 TopOnctopon 22813 ⇝𝑡clm 23129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-ordt 17423 df-xrs 17424 df-ps 18490 df-tsr 18491 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-lm 23132 df-xms 24224 df-ms 24225 |
| This theorem is referenced by: esumcvg 34052 dstfrvclim1 34445 |
| Copyright terms: Public domain | W3C validator |