![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlimxrge0 | Structured version Visualization version GIF version |
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
lmlimxrge0.j | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
lmlimxrge0.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmlimxrge0.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
lmlimxrge0.x | ⊢ 𝑋 ⊆ (0[,)+∞) |
Ref | Expression |
---|---|
lmlimxrge0 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlimxrge0.j | . . . 4 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | xrge0topn 33889 | . . . 4 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
3 | 1, 2 | eqtri 2768 | . . 3 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
4 | letopon 23234 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
5 | iccssxr 13490 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | resttopon 23190 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)) |
8 | 3, 7 | eqeltri 2840 | . 2 ⊢ 𝐽 ∈ (TopOn‘(0[,]+∞)) |
9 | lmlimxrge0.f | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
10 | lmlimxrge0.p | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
11 | fvex 6933 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ V | |
12 | lmlimxrge0.x | . . . . 5 ⊢ 𝑋 ⊆ (0[,)+∞) | |
13 | icossicc 13496 | . . . . 5 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
14 | 12, 13 | sstri 4018 | . . . 4 ⊢ 𝑋 ⊆ (0[,]+∞) |
15 | ovex 7481 | . . . 4 ⊢ (0[,]+∞) ∈ V | |
16 | restabs 23194 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) | |
17 | 11, 14, 15, 16 | mp3an 1461 | . . 3 ⊢ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
18 | 3 | oveq1i 7458 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) |
19 | rge0ssre 13516 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
20 | 12, 19 | sstri 4018 | . . . 4 ⊢ 𝑋 ⊆ ℝ |
21 | eqid 2740 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | eqid 2740 | . . . . 5 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
23 | 21, 22 | xrrest2 24849 | . . . 4 ⊢ (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)) |
24 | 20, 23 | ax-mp 5 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋) |
25 | 17, 18, 24 | 3eqtr4i 2778 | . 2 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
26 | ax-resscn 11241 | . . 3 ⊢ ℝ ⊆ ℂ | |
27 | 20, 26 | sstri 4018 | . 2 ⊢ 𝑋 ⊆ ℂ |
28 | 8, 9, 10, 25, 27 | lmlim 33893 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 ℕcn 12293 [,)cico 13409 [,]cicc 13410 ⇝ cli 15530 ↾s cress 17287 ↾t crest 17480 TopOpenctopn 17481 ordTopcordt 17559 ℝ*𝑠cxrs 17560 ℂfldccnfld 21387 TopOnctopon 22937 ⇝𝑡clm 23255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-ordt 17561 df-xrs 17562 df-ps 18636 df-tsr 18637 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-lm 23258 df-xms 24351 df-ms 24352 |
This theorem is referenced by: esumcvg 34050 dstfrvclim1 34442 |
Copyright terms: Public domain | W3C validator |