Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmlimxrge0 Structured version   Visualization version   GIF version

Theorem lmlimxrge0 33956
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
lmlimxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmlimxrge0.f (𝜑𝐹:ℕ⟶𝑋)
lmlimxrge0.p (𝜑𝑃𝑋)
lmlimxrge0.x 𝑋 ⊆ (0[,)+∞)
Assertion
Ref Expression
lmlimxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))

Proof of Theorem lmlimxrge0
StepHypRef Expression
1 lmlimxrge0.j . . . 4 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0topn 33951 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2eqtri 2754 . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4 letopon 23118 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
5 iccssxr 13327 . . . 4 (0[,]+∞) ⊆ ℝ*
6 resttopon 23074 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
74, 5, 6mp2an 692 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
83, 7eqeltri 2827 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
9 lmlimxrge0.f . 2 (𝜑𝐹:ℕ⟶𝑋)
10 lmlimxrge0.p . 2 (𝜑𝑃𝑋)
11 fvex 6835 . . . 4 (ordTop‘ ≤ ) ∈ V
12 lmlimxrge0.x . . . . 5 𝑋 ⊆ (0[,)+∞)
13 icossicc 13333 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
1412, 13sstri 3944 . . . 4 𝑋 ⊆ (0[,]+∞)
15 ovex 7379 . . . 4 (0[,]+∞) ∈ V
16 restabs 23078 . . . 4 (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
1711, 14, 15, 16mp3an 1463 . . 3 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
183oveq1i 7356 . . 3 (𝐽t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋)
19 rge0ssre 13353 . . . . 5 (0[,)+∞) ⊆ ℝ
2012, 19sstri 3944 . . . 4 𝑋 ⊆ ℝ
21 eqid 2731 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 eqid 2731 . . . . 5 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2321, 22xrrest2 24722 . . . 4 (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
2420, 23ax-mp 5 . . 3 ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
2517, 18, 243eqtr4i 2764 . 2 (𝐽t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
26 ax-resscn 11060 . . 3 ℝ ⊆ ℂ
2720, 26sstri 3944 . 2 𝑋 ⊆ ℂ
288, 9, 10, 25, 27lmlim 33955 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  +∞cpnf 11140  *cxr 11142  cle 11144  cn 12122  [,)cico 13244  [,]cicc 13245  cli 15388  s cress 17138  t crest 17321  TopOpenctopn 17322  ordTopcordt 17400  *𝑠cxrs 17401  fldccnfld 21289  TopOnctopon 22823  𝑡clm 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-rest 17323  df-topn 17324  df-topgen 17344  df-ordt 17402  df-xrs 17403  df-ps 18469  df-tsr 18470  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-lm 23142  df-xms 24233  df-ms 24234
This theorem is referenced by:  esumcvg  34094  dstfrvclim1  34486
  Copyright terms: Public domain W3C validator