Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | nncan 11352 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7338 ℂcc 10971 − cmin 11307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-sub 11309 |
This theorem is referenced by: moddiffl 13704 flmod 13707 ccatswrd 14480 o1dif 15439 fprodser 15759 fprodrev 15787 fallfacval3 15822 efaddlem 15902 4sqlem5 16741 mul4sqlem 16752 4sqlem14 16757 znunit 20878 coe1tmmul2 21554 blssps 23684 blss 23685 metdstri 24121 ivthlem3 24724 ioorcl2 24843 vitalilem2 24880 dvexp3 25249 dvcvx 25291 iblulm 25673 chordthmlem4 26092 heron 26095 cubic 26106 dquartlem1 26108 birthdaylem2 26209 lgamgulmlem2 26286 lgamcvg2 26311 ftalem2 26330 basellem3 26339 gausslemma2dlem1a 26620 lgsquadlem1 26635 addsqrexnreu 26697 pntrlog2bndlem4 26835 axsegconlem1 27575 lt2addrd 31361 ballotlemsf1o 32780 revpfxsfxrev 33376 swrdrevpfx 33377 bcprod 33996 irrdiff 35653 sticksstones12a 40421 sticksstones12 40422 fltnltalem 40812 fltnlta 40813 lzenom 40905 rmspecfund 41044 fzmaxdif 41117 jm2.18 41124 jm2.19 41129 jm2.20nn 41133 supxrgere 43259 lptre2pt 43569 ioodvbdlimc2lem 43863 dvnprodlem1 43875 dvnprodlem2 43876 fourierdlem4 44040 fourierdlem26 44062 fourierdlem42 44078 fourierdlem48 44083 fourierdlem65 44100 fouriersw 44160 sge0gtfsumgt 44370 meaiininclem 44413 fmtnorec2lem 45412 goldbachthlem2 45416 pw2m1lepw2m1 46279 eenglngeehlnmlem2 46502 itsclquadb 46540 |
Copyright terms: Public domain | W3C validator |