| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: moddiffl 13844 flmod 13847 ccatswrd 14633 o1dif 15596 fprodser 15915 fprodrev 15943 fallfacval3 15978 efaddlem 16059 4sqlem5 16913 mul4sqlem 16924 4sqlem14 16929 znunit 21473 coe1tmmul2 22162 blssps 24312 blss 24313 metdstri 24740 ivthlem3 25354 ioorcl2 25473 vitalilem2 25510 dvexp3 25882 dvcvx 25925 iblulm 26316 chordthmlem4 26745 heron 26748 cubic 26759 dquartlem1 26761 birthdaylem2 26862 lgamgulmlem2 26940 lgamcvg2 26965 ftalem2 26984 basellem3 26993 gausslemma2dlem1a 27276 lgsquadlem1 27291 addsqrexnreu 27353 pntrlog2bndlem4 27491 axsegconlem1 28844 lt2addrd 32674 ballotlemsf1o 34505 revpfxsfxrev 35103 swrdrevpfx 35104 bcprod 35725 irrdiff 37314 sticksstones12a 42145 sticksstones12 42146 fltnltalem 42650 fltnlta 42651 lzenom 42758 rmspecfund 42897 fzmaxdif 42970 jm2.18 42977 jm2.19 42982 jm2.20nn 42986 supxrgere 45329 lptre2pt 45638 ioodvbdlimc2lem 45932 dvnprodlem1 45944 dvnprodlem2 45945 fourierdlem4 46109 fourierdlem26 46131 fourierdlem42 46147 fourierdlem48 46152 fourierdlem65 46169 fouriersw 46229 sge0gtfsumgt 46441 meaiininclem 46484 m1modne 47349 fmtnorec2lem 47543 goldbachthlem2 47547 pw2m1lepw2m1 48509 eenglngeehlnmlem2 48727 itsclquadb 48765 |
| Copyright terms: Public domain | W3C validator |