Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | nncan 11107 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 ℂcc 10727 − cmin 11062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 |
This theorem is referenced by: moddiffl 13455 flmod 13458 ccatswrd 14233 o1dif 15191 fprodser 15511 fprodrev 15539 fallfacval3 15574 efaddlem 15654 4sqlem5 16495 mul4sqlem 16506 4sqlem14 16511 znunit 20528 coe1tmmul2 21197 blssps 23322 blss 23323 metdstri 23748 ivthlem3 24350 ioorcl2 24469 vitalilem2 24506 dvexp3 24875 dvcvx 24917 iblulm 25299 chordthmlem4 25718 heron 25721 cubic 25732 dquartlem1 25734 birthdaylem2 25835 lgamgulmlem2 25912 lgamcvg2 25937 ftalem2 25956 basellem3 25965 gausslemma2dlem1a 26246 lgsquadlem1 26261 addsqrexnreu 26323 pntrlog2bndlem4 26461 axsegconlem1 27008 lt2addrd 30794 ballotlemsf1o 32192 revpfxsfxrev 32790 swrdrevpfx 32791 bcprod 33422 irrdiff 35231 sticksstones12a 39835 sticksstones12 39836 fltnltalem 40202 fltnlta 40203 lzenom 40295 rmspecfund 40434 fzmaxdif 40506 jm2.18 40513 jm2.19 40518 jm2.20nn 40522 supxrgere 42545 lptre2pt 42856 ioodvbdlimc2lem 43150 dvnprodlem1 43162 dvnprodlem2 43163 fourierdlem4 43327 fourierdlem26 43349 fourierdlem42 43365 fourierdlem48 43370 fourierdlem65 43387 fouriersw 43447 sge0gtfsumgt 43656 meaiininclem 43699 fmtnorec2lem 44667 goldbachthlem2 44671 pw2m1lepw2m1 45534 eenglngeehlnmlem2 45757 itsclquadb 45795 |
Copyright terms: Public domain | W3C validator |