Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | nncan 11250 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 |
This theorem is referenced by: moddiffl 13602 flmod 13605 ccatswrd 14381 o1dif 15339 fprodser 15659 fprodrev 15687 fallfacval3 15722 efaddlem 15802 4sqlem5 16643 mul4sqlem 16654 4sqlem14 16659 znunit 20771 coe1tmmul2 21447 blssps 23577 blss 23578 metdstri 24014 ivthlem3 24617 ioorcl2 24736 vitalilem2 24773 dvexp3 25142 dvcvx 25184 iblulm 25566 chordthmlem4 25985 heron 25988 cubic 25999 dquartlem1 26001 birthdaylem2 26102 lgamgulmlem2 26179 lgamcvg2 26204 ftalem2 26223 basellem3 26232 gausslemma2dlem1a 26513 lgsquadlem1 26528 addsqrexnreu 26590 pntrlog2bndlem4 26728 axsegconlem1 27285 lt2addrd 31074 ballotlemsf1o 32480 revpfxsfxrev 33077 swrdrevpfx 33078 bcprod 33704 irrdiff 35497 sticksstones12a 40113 sticksstones12 40114 fltnltalem 40499 fltnlta 40500 lzenom 40592 rmspecfund 40731 fzmaxdif 40803 jm2.18 40810 jm2.19 40815 jm2.20nn 40819 supxrgere 42872 lptre2pt 43181 ioodvbdlimc2lem 43475 dvnprodlem1 43487 dvnprodlem2 43488 fourierdlem4 43652 fourierdlem26 43674 fourierdlem42 43690 fourierdlem48 43695 fourierdlem65 43712 fouriersw 43772 sge0gtfsumgt 43981 meaiininclem 44024 fmtnorec2lem 44994 goldbachthlem2 44998 pw2m1lepw2m1 45861 eenglngeehlnmlem2 46084 itsclquadb 46122 |
Copyright terms: Public domain | W3C validator |