| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: moddiffl 13851 flmod 13854 ccatswrd 14640 o1dif 15603 fprodser 15922 fprodrev 15950 fallfacval3 15985 efaddlem 16066 4sqlem5 16920 mul4sqlem 16931 4sqlem14 16936 znunit 21480 coe1tmmul2 22169 blssps 24319 blss 24320 metdstri 24747 ivthlem3 25361 ioorcl2 25480 vitalilem2 25517 dvexp3 25889 dvcvx 25932 iblulm 26323 chordthmlem4 26752 heron 26755 cubic 26766 dquartlem1 26768 birthdaylem2 26869 lgamgulmlem2 26947 lgamcvg2 26972 ftalem2 26991 basellem3 27000 gausslemma2dlem1a 27283 lgsquadlem1 27298 addsqrexnreu 27360 pntrlog2bndlem4 27498 axsegconlem1 28851 lt2addrd 32681 ballotlemsf1o 34512 revpfxsfxrev 35110 swrdrevpfx 35111 bcprod 35732 irrdiff 37321 sticksstones12a 42152 sticksstones12 42153 fltnltalem 42657 fltnlta 42658 lzenom 42765 rmspecfund 42904 fzmaxdif 42977 jm2.18 42984 jm2.19 42989 jm2.20nn 42993 supxrgere 45336 lptre2pt 45645 ioodvbdlimc2lem 45939 dvnprodlem1 45951 dvnprodlem2 45952 fourierdlem4 46116 fourierdlem26 46138 fourierdlem42 46154 fourierdlem48 46159 fourierdlem65 46176 fouriersw 46236 sge0gtfsumgt 46448 meaiininclem 46491 m1modne 47353 fmtnorec2lem 47547 goldbachthlem2 47551 pw2m1lepw2m1 48513 eenglngeehlnmlem2 48731 itsclquadb 48769 |
| Copyright terms: Public domain | W3C validator |