MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncand Structured version   Visualization version   GIF version

Theorem nncand 10994
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
nncand (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)

Proof of Theorem nncand
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 nncan 10907 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  (class class class)co 7151  cc 10527  cmin 10862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864
This theorem is referenced by:  moddiffl  13243  flmod  13246  ccatswrd  14023  o1dif  14979  fprodser  15295  fprodrev  15323  fallfacval3  15358  efaddlem  15438  4sqlem5  16270  mul4sqlem  16281  4sqlem14  16286  coe1tmmul2  20361  znunit  20626  blssps  22949  blss  22950  metdstri  23374  ivthlem3  23969  ioorcl2  24088  vitalilem2  24125  dvexp3  24490  dvcvx  24532  iblulm  24910  chordthmlem4  25326  heron  25329  cubic  25340  dquartlem1  25342  birthdaylem2  25444  lgamgulmlem2  25521  lgamcvg2  25546  ftalem2  25565  basellem3  25574  gausslemma2dlem1a  25855  lgsquadlem1  25870  addsqrexnreu  25932  pntrlog2bndlem4  26070  axsegconlem1  26617  lt2addrd  30388  ballotlemsf1o  31657  revpfxsfxrev  32246  swrdrevpfx  32247  bcprod  32854  fltnltalem  39135  fltnlta  39136  lzenom  39228  rmspecfund  39367  fzmaxdif  39439  jm2.18  39446  jm2.19  39451  jm2.20nn  39455  supxrgere  41462  lptre2pt  41782  ioodvbdlimc2lem  42080  dvnprodlem1  42092  dvnprodlem2  42093  fourierdlem4  42258  fourierdlem26  42280  fourierdlem42  42296  fourierdlem48  42301  fourierdlem65  42318  fouriersw  42378  sge0gtfsumgt  42587  meaiininclem  42630  fmtnorec2lem  43532  goldbachthlem2  43536  pw2m1lepw2m1  44403  eenglngeehlnmlem2  44553  itsclquadb  44591
  Copyright terms: Public domain W3C validator