| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11512 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 − cmin 11466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 |
| This theorem is referenced by: moddiffl 13899 flmod 13902 ccatswrd 14686 o1dif 15646 fprodser 15965 fprodrev 15993 fallfacval3 16028 efaddlem 16109 4sqlem5 16962 mul4sqlem 16973 4sqlem14 16978 znunit 21524 coe1tmmul2 22213 blssps 24363 blss 24364 metdstri 24791 ivthlem3 25406 ioorcl2 25525 vitalilem2 25562 dvexp3 25934 dvcvx 25977 iblulm 26368 chordthmlem4 26797 heron 26800 cubic 26811 dquartlem1 26813 birthdaylem2 26914 lgamgulmlem2 26992 lgamcvg2 27017 ftalem2 27036 basellem3 27045 gausslemma2dlem1a 27328 lgsquadlem1 27343 addsqrexnreu 27405 pntrlog2bndlem4 27543 axsegconlem1 28896 lt2addrd 32728 ballotlemsf1o 34546 revpfxsfxrev 35138 swrdrevpfx 35139 bcprod 35755 irrdiff 37344 sticksstones12a 42170 sticksstones12 42171 fltnltalem 42685 fltnlta 42686 lzenom 42793 rmspecfund 42932 fzmaxdif 43005 jm2.18 43012 jm2.19 43017 jm2.20nn 43021 supxrgere 45360 lptre2pt 45669 ioodvbdlimc2lem 45963 dvnprodlem1 45975 dvnprodlem2 45976 fourierdlem4 46140 fourierdlem26 46162 fourierdlem42 46178 fourierdlem48 46183 fourierdlem65 46200 fouriersw 46260 sge0gtfsumgt 46472 meaiininclem 46515 m1modne 47377 fmtnorec2lem 47556 goldbachthlem2 47560 pw2m1lepw2m1 48496 eenglngeehlnmlem2 48718 itsclquadb 48756 |
| Copyright terms: Public domain | W3C validator |