| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11397 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 − cmin 11351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 |
| This theorem is referenced by: moddiffl 13788 flmod 13791 ccatswrd 14578 o1dif 15539 fprodser 15858 fprodrev 15886 fallfacval3 15921 efaddlem 16002 4sqlem5 16856 mul4sqlem 16867 4sqlem14 16872 znunit 21502 coe1tmmul2 22191 blssps 24340 blss 24341 metdstri 24768 ivthlem3 25382 ioorcl2 25501 vitalilem2 25538 dvexp3 25910 dvcvx 25953 iblulm 26344 chordthmlem4 26773 heron 26776 cubic 26787 dquartlem1 26789 birthdaylem2 26890 lgamgulmlem2 26968 lgamcvg2 26993 ftalem2 27012 basellem3 27021 gausslemma2dlem1a 27304 lgsquadlem1 27319 addsqrexnreu 27381 pntrlog2bndlem4 27519 axsegconlem1 28897 lt2addrd 32738 ballotlemsf1o 34548 revpfxsfxrev 35181 swrdrevpfx 35182 bcprod 35803 irrdiff 37391 sticksstones12a 42270 sticksstones12 42271 fltnltalem 42780 fltnlta 42781 lzenom 42887 rmspecfund 43026 fzmaxdif 43098 jm2.18 43105 jm2.19 43110 jm2.20nn 43114 supxrgere 45456 lptre2pt 45762 ioodvbdlimc2lem 46056 dvnprodlem1 46068 dvnprodlem2 46069 fourierdlem4 46233 fourierdlem26 46255 fourierdlem42 46271 fourierdlem48 46276 fourierdlem65 46293 fouriersw 46353 sge0gtfsumgt 46565 meaiininclem 46608 m1modne 47472 fmtnorec2lem 47666 goldbachthlem2 47670 pw2m1lepw2m1 48645 eenglngeehlnmlem2 48863 itsclquadb 48901 |
| Copyright terms: Public domain | W3C validator |