| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 − cmin 11365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 |
| This theorem is referenced by: moddiffl 13804 flmod 13807 ccatswrd 14593 o1dif 15555 fprodser 15874 fprodrev 15902 fallfacval3 15937 efaddlem 16018 4sqlem5 16872 mul4sqlem 16883 4sqlem14 16888 znunit 21488 coe1tmmul2 22178 blssps 24328 blss 24329 metdstri 24756 ivthlem3 25370 ioorcl2 25489 vitalilem2 25526 dvexp3 25898 dvcvx 25941 iblulm 26332 chordthmlem4 26761 heron 26764 cubic 26775 dquartlem1 26777 birthdaylem2 26878 lgamgulmlem2 26956 lgamcvg2 26981 ftalem2 27000 basellem3 27009 gausslemma2dlem1a 27292 lgsquadlem1 27307 addsqrexnreu 27369 pntrlog2bndlem4 27507 axsegconlem1 28880 lt2addrd 32707 ballotlemsf1o 34481 revpfxsfxrev 35088 swrdrevpfx 35089 bcprod 35710 irrdiff 37299 sticksstones12a 42130 sticksstones12 42131 fltnltalem 42635 fltnlta 42636 lzenom 42743 rmspecfund 42882 fzmaxdif 42954 jm2.18 42961 jm2.19 42966 jm2.20nn 42970 supxrgere 45313 lptre2pt 45622 ioodvbdlimc2lem 45916 dvnprodlem1 45928 dvnprodlem2 45929 fourierdlem4 46093 fourierdlem26 46115 fourierdlem42 46131 fourierdlem48 46136 fourierdlem65 46153 fouriersw 46213 sge0gtfsumgt 46425 meaiininclem 46468 m1modne 47333 fmtnorec2lem 47527 goldbachthlem2 47531 pw2m1lepw2m1 48506 eenglngeehlnmlem2 48724 itsclquadb 48762 |
| Copyright terms: Public domain | W3C validator |