![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | nncan 11536 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 − cmin 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 |
This theorem is referenced by: moddiffl 13919 flmod 13922 ccatswrd 14703 o1dif 15663 fprodser 15982 fprodrev 16010 fallfacval3 16045 efaddlem 16126 4sqlem5 16976 mul4sqlem 16987 4sqlem14 16992 znunit 21600 coe1tmmul2 22295 blssps 24450 blss 24451 metdstri 24887 ivthlem3 25502 ioorcl2 25621 vitalilem2 25658 dvexp3 26031 dvcvx 26074 iblulm 26465 chordthmlem4 26893 heron 26896 cubic 26907 dquartlem1 26909 birthdaylem2 27010 lgamgulmlem2 27088 lgamcvg2 27113 ftalem2 27132 basellem3 27141 gausslemma2dlem1a 27424 lgsquadlem1 27439 addsqrexnreu 27501 pntrlog2bndlem4 27639 axsegconlem1 28947 lt2addrd 32762 ballotlemsf1o 34495 revpfxsfxrev 35100 swrdrevpfx 35101 bcprod 35718 irrdiff 37309 sticksstones12a 42139 sticksstones12 42140 fltnltalem 42649 fltnlta 42650 lzenom 42758 rmspecfund 42897 fzmaxdif 42970 jm2.18 42977 jm2.19 42982 jm2.20nn 42986 supxrgere 45283 lptre2pt 45596 ioodvbdlimc2lem 45890 dvnprodlem1 45902 dvnprodlem2 45903 fourierdlem4 46067 fourierdlem26 46089 fourierdlem42 46105 fourierdlem48 46110 fourierdlem65 46127 fouriersw 46187 sge0gtfsumgt 46399 meaiininclem 46442 m1modne 47288 fmtnorec2lem 47467 goldbachthlem2 47471 pw2m1lepw2m1 48366 eenglngeehlnmlem2 48588 itsclquadb 48626 |
Copyright terms: Public domain | W3C validator |