| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | nncan 11387 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 − cmin 11341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-sub 11343 |
| This theorem is referenced by: moddiffl 13783 flmod 13786 ccatswrd 14573 o1dif 15534 fprodser 15853 fprodrev 15881 fallfacval3 15916 efaddlem 15997 4sqlem5 16851 mul4sqlem 16862 4sqlem14 16867 znunit 21498 coe1tmmul2 22188 blssps 24337 blss 24338 metdstri 24765 ivthlem3 25379 ioorcl2 25498 vitalilem2 25535 dvexp3 25907 dvcvx 25950 iblulm 26341 chordthmlem4 26770 heron 26773 cubic 26784 dquartlem1 26786 birthdaylem2 26887 lgamgulmlem2 26965 lgamcvg2 26990 ftalem2 27009 basellem3 27018 gausslemma2dlem1a 27301 lgsquadlem1 27316 addsqrexnreu 27378 pntrlog2bndlem4 27516 axsegconlem1 28893 lt2addrd 32729 ballotlemsf1o 34522 revpfxsfxrev 35148 swrdrevpfx 35149 bcprod 35770 irrdiff 37359 sticksstones12a 42189 sticksstones12 42190 fltnltalem 42694 fltnlta 42695 lzenom 42802 rmspecfund 42941 fzmaxdif 43013 jm2.18 43020 jm2.19 43025 jm2.20nn 43029 supxrgere 45371 lptre2pt 45677 ioodvbdlimc2lem 45971 dvnprodlem1 45983 dvnprodlem2 45984 fourierdlem4 46148 fourierdlem26 46170 fourierdlem42 46186 fourierdlem48 46191 fourierdlem65 46208 fouriersw 46268 sge0gtfsumgt 46480 meaiininclem 46523 m1modne 47378 fmtnorec2lem 47572 goldbachthlem2 47576 pw2m1lepw2m1 48551 eenglngeehlnmlem2 48769 itsclquadb 48807 |
| Copyright terms: Public domain | W3C validator |