Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt31 Structured version   Visualization version   GIF version

Theorem metakunt31 40083
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt31.1 (𝜑𝑀 ∈ ℕ)
metakunt31.2 (𝜑𝐼 ∈ ℕ)
metakunt31.3 (𝜑𝐼𝑀)
metakunt31.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt31.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt31.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt31.7 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt31.8 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt31.9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt31.10 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt31 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Distinct variable groups:   𝑦,𝐺   𝑦,𝐻   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑧)   𝐻(𝑥,𝑧)

Proof of Theorem metakunt31
StepHypRef Expression
1 metakunt31.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑀 ∈ ℕ)
3 metakunt31.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼 ∈ ℕ)
5 metakunt31.3 . . . . . 6 (𝜑𝐼𝑀)
65adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼𝑀)
7 metakunt31.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
8 metakunt31.7 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
9 metakunt31.6 . . . . 5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
10 simpr 484 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑋 = 𝐼)
112, 4, 6, 7, 8, 9, 10metakunt26 40078 . . . 4 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
1210iftrued 4464 . . . . 5 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑋)
1312eqcomd 2744 . . . 4 ((𝜑𝑋 = 𝐼) → 𝑋 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
1411, 13eqtrd 2778 . . 3 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
15 metakunt31.10 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
1615eqcomi 2747 . . . 4 if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅
1716a1i 11 . . 3 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
1814, 17eqtrd 2778 . 2 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
1913ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑀 ∈ ℕ)
2033ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼 ∈ ℕ)
2153ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼𝑀)
22 metakunt31.4 . . . . . . . 8 (𝜑𝑋 ∈ (1...𝑀))
23223ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
24 simp2 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
25 simp3 1136 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 < 𝐼)
26 metakunt31.8 . . . . . . 7 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
2719, 20, 21, 23, 7, 9, 24, 25, 8, 26metakunt29 40081 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
2824iffalsed 4467 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2925iftrued 4464 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3028, 29eqtrd 2778 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3130eqcomd 2744 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ((𝑋 + (𝑀𝐼)) + 𝐺) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3227, 31eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3316a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3432, 33eqtrd 2778 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
35343expa 1116 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
3613ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑀 ∈ ℕ)
3733ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℕ)
3853ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑀)
39223ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
40 simp2 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
41 simp3 1136 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
42 metakunt31.9 . . . . . . 7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4336, 37, 38, 39, 7, 9, 40, 41, 8, 42metakunt30 40082 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
4440iffalsed 4467 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
4541iffalsed 4467 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋𝐼) + 𝐻))
4644, 45eqtrd 2778 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋𝐼) + 𝐻))
4746eqcomd 2744 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ((𝑋𝐼) + 𝐻) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4843, 47eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4916a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
5048, 49eqtrd 2778 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
51503expa 1116 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5235, 51pm2.61dan 809 . 2 ((𝜑 ∧ ¬ 𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5318, 52pm2.61dan 809 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169
This theorem is referenced by:  metakunt33  40085
  Copyright terms: Public domain W3C validator