Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt31 Structured version   Visualization version   GIF version

Theorem metakunt31 42192
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt31.1 (𝜑𝑀 ∈ ℕ)
metakunt31.2 (𝜑𝐼 ∈ ℕ)
metakunt31.3 (𝜑𝐼𝑀)
metakunt31.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt31.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt31.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt31.7 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt31.8 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt31.9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt31.10 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt31 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Distinct variable groups:   𝑦,𝐺   𝑦,𝐻   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑧)   𝐻(𝑥,𝑧)

Proof of Theorem metakunt31
StepHypRef Expression
1 metakunt31.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑀 ∈ ℕ)
3 metakunt31.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼 ∈ ℕ)
5 metakunt31.3 . . . . . 6 (𝜑𝐼𝑀)
65adantr 480 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼𝑀)
7 metakunt31.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
8 metakunt31.7 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
9 metakunt31.6 . . . . 5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
10 simpr 484 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑋 = 𝐼)
112, 4, 6, 7, 8, 9, 10metakunt26 42187 . . . 4 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
1210iftrued 4556 . . . . 5 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑋)
1312eqcomd 2746 . . . 4 ((𝜑𝑋 = 𝐼) → 𝑋 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
1411, 13eqtrd 2780 . . 3 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
15 metakunt31.10 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
1615eqcomi 2749 . . . 4 if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅
1716a1i 11 . . 3 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
1814, 17eqtrd 2780 . 2 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
1913ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑀 ∈ ℕ)
2033ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼 ∈ ℕ)
2153ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼𝑀)
22 metakunt31.4 . . . . . . . 8 (𝜑𝑋 ∈ (1...𝑀))
23223ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
24 simp2 1137 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
25 simp3 1138 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 < 𝐼)
26 metakunt31.8 . . . . . . 7 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
2719, 20, 21, 23, 7, 9, 24, 25, 8, 26metakunt29 42190 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
2824iffalsed 4559 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2925iftrued 4556 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3028, 29eqtrd 2780 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3130eqcomd 2746 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ((𝑋 + (𝑀𝐼)) + 𝐺) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3227, 31eqtrd 2780 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3316a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3432, 33eqtrd 2780 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
35343expa 1118 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
3613ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑀 ∈ ℕ)
3733ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℕ)
3853ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑀)
39223ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
40 simp2 1137 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
41 simp3 1138 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
42 metakunt31.9 . . . . . . 7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4336, 37, 38, 39, 7, 9, 40, 41, 8, 42metakunt30 42191 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
4440iffalsed 4559 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
4541iffalsed 4559 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋𝐼) + 𝐻))
4644, 45eqtrd 2780 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋𝐼) + 𝐻))
4746eqcomd 2746 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ((𝑋𝐼) + 𝐻) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4843, 47eqtrd 2780 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4916a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
5048, 49eqtrd 2780 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
51503expa 1118 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5235, 51pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5318, 52pm2.61dan 812 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568
This theorem is referenced by:  metakunt33  42194
  Copyright terms: Public domain W3C validator