Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt31 Structured version   Visualization version   GIF version

Theorem metakunt31 41743
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt31.1 (𝜑𝑀 ∈ ℕ)
metakunt31.2 (𝜑𝐼 ∈ ℕ)
metakunt31.3 (𝜑𝐼𝑀)
metakunt31.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt31.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt31.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt31.7 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt31.8 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt31.9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt31.10 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt31 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Distinct variable groups:   𝑦,𝐺   𝑦,𝐻   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑧)   𝐻(𝑥,𝑧)

Proof of Theorem metakunt31
StepHypRef Expression
1 metakunt31.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 479 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑀 ∈ ℕ)
3 metakunt31.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43adantr 479 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼 ∈ ℕ)
5 metakunt31.3 . . . . . 6 (𝜑𝐼𝑀)
65adantr 479 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼𝑀)
7 metakunt31.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
8 metakunt31.7 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
9 metakunt31.6 . . . . 5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
10 simpr 483 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑋 = 𝐼)
112, 4, 6, 7, 8, 9, 10metakunt26 41738 . . . 4 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
1210iftrued 4532 . . . . 5 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑋)
1312eqcomd 2731 . . . 4 ((𝜑𝑋 = 𝐼) → 𝑋 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
1411, 13eqtrd 2765 . . 3 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
15 metakunt31.10 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
1615eqcomi 2734 . . . 4 if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅
1716a1i 11 . . 3 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
1814, 17eqtrd 2765 . 2 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
1913ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑀 ∈ ℕ)
2033ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼 ∈ ℕ)
2153ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼𝑀)
22 metakunt31.4 . . . . . . . 8 (𝜑𝑋 ∈ (1...𝑀))
23223ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
24 simp2 1134 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
25 simp3 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 < 𝐼)
26 metakunt31.8 . . . . . . 7 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
2719, 20, 21, 23, 7, 9, 24, 25, 8, 26metakunt29 41741 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
2824iffalsed 4535 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2925iftrued 4532 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3028, 29eqtrd 2765 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3130eqcomd 2731 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ((𝑋 + (𝑀𝐼)) + 𝐺) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3227, 31eqtrd 2765 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3316a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3432, 33eqtrd 2765 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
35343expa 1115 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
3613ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑀 ∈ ℕ)
3733ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℕ)
3853ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑀)
39223ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
40 simp2 1134 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
41 simp3 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
42 metakunt31.9 . . . . . . 7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4336, 37, 38, 39, 7, 9, 40, 41, 8, 42metakunt30 41742 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
4440iffalsed 4535 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
4541iffalsed 4535 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋𝐼) + 𝐻))
4644, 45eqtrd 2765 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋𝐼) + 𝐻))
4746eqcomd 2731 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ((𝑋𝐼) + 𝐻) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4843, 47eqtrd 2765 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4916a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
5048, 49eqtrd 2765 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
51503expa 1115 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5235, 51pm2.61dan 811 . 2 ((𝜑 ∧ ¬ 𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5318, 52pm2.61dan 811 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  ifcif 4524   class class class wbr 5143  cmpt 5226  cfv 6543  (class class class)co 7416  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474  cn 12242  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517
This theorem is referenced by:  metakunt33  41745
  Copyright terms: Public domain W3C validator