Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt31 Structured version   Visualization version   GIF version

Theorem metakunt31 39662
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt31.1 (𝜑𝑀 ∈ ℕ)
metakunt31.2 (𝜑𝐼 ∈ ℕ)
metakunt31.3 (𝜑𝐼𝑀)
metakunt31.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt31.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt31.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt31.7 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt31.8 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt31.9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt31.10 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt31 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Distinct variable groups:   𝑦,𝐺   𝑦,𝐻   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑧)   𝐻(𝑥,𝑧)

Proof of Theorem metakunt31
StepHypRef Expression
1 metakunt31.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 485 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑀 ∈ ℕ)
3 metakunt31.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43adantr 485 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼 ∈ ℕ)
5 metakunt31.3 . . . . . 6 (𝜑𝐼𝑀)
65adantr 485 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝐼𝑀)
7 metakunt31.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
8 metakunt31.7 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
9 metakunt31.6 . . . . 5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
10 simpr 489 . . . . 5 ((𝜑𝑋 = 𝐼) → 𝑋 = 𝐼)
112, 4, 6, 7, 8, 9, 10metakunt26 39657 . . . 4 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
1210iftrued 4421 . . . . 5 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑋)
1312eqcomd 2765 . . . 4 ((𝜑𝑋 = 𝐼) → 𝑋 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
1411, 13eqtrd 2794 . . 3 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
15 metakunt31.10 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
1615eqcomi 2768 . . . 4 if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅
1716a1i 11 . . 3 ((𝜑𝑋 = 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
1814, 17eqtrd 2794 . 2 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
1913ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑀 ∈ ℕ)
2033ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼 ∈ ℕ)
2153ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝐼𝑀)
22 metakunt31.4 . . . . . . . 8 (𝜑𝑋 ∈ (1...𝑀))
23223ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
24 simp2 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
25 simp3 1136 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → 𝑋 < 𝐼)
26 metakunt31.8 . . . . . . 7 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
2719, 20, 21, 23, 7, 9, 24, 25, 8, 26metakunt29 39660 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
2824iffalsed 4424 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2925iftrued 4421 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3028, 29eqtrd 2794 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋 + (𝑀𝐼)) + 𝐺))
3130eqcomd 2765 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → ((𝑋 + (𝑀𝐼)) + 𝐺) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3227, 31eqtrd 2794 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
3316a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3432, 33eqtrd 2794 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
35343expa 1116 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
3613ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑀 ∈ ℕ)
3733ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℕ)
3853ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝐼𝑀)
39223ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
40 simp2 1135 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
41 simp3 1136 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼)
42 metakunt31.9 . . . . . . 7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4336, 37, 38, 39, 7, 9, 40, 41, 8, 42metakunt30 39661 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
4440iffalsed 4424 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
4541iffalsed 4424 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) = ((𝑋𝐼) + 𝐻))
4644, 45eqtrd 2794 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = ((𝑋𝐼) + 𝐻))
4746eqcomd 2765 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → ((𝑋𝐼) + 𝐻) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4843, 47eqtrd 2794 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
4916a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
5048, 49eqtrd 2794 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
51503expa 1116 . . 3 (((𝜑 ∧ ¬ 𝑋 = 𝐼) ∧ ¬ 𝑋 < 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5235, 51pm2.61dan 813 . 2 ((𝜑 ∧ ¬ 𝑋 = 𝐼) → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
5318, 52pm2.61dan 813 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  ifcif 4413   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925
This theorem is referenced by:  metakunt33  39664
  Copyright terms: Public domain W3C validator