Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt29 Structured version   Visualization version   GIF version

Theorem metakunt29 39827
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt29.1 (𝜑𝑀 ∈ ℕ)
metakunt29.2 (𝜑𝐼 ∈ ℕ)
metakunt29.3 (𝜑𝐼𝑀)
metakunt29.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt29.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt29.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt29.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt29.8 (𝜑𝑋 < 𝐼)
metakunt29.9 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt29.10 𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
Assertion
Ref Expression
metakunt29 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
Distinct variable groups:   𝑦,𝐻   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt29
StepHypRef Expression
1 metakunt29.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt29.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt29.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt29.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
5 metakunt29.5 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6 metakunt29.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
7 metakunt29.7 . . . 4 (𝜑 → ¬ 𝑋 = 𝐼)
8 metakunt29.8 . . . 4 (𝜑𝑋 < 𝐼)
91, 2, 3, 4, 5, 6, 7, 8metakunt27 39825 . . 3 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
109fveq2d 6710 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶‘(𝑋 + (𝑀𝐼))))
11 metakunt29.9 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . 3 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 elfznn 13124 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
144, 13syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
15 nnre 11820 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
171nnred 11828 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
182nnred 11828 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1917, 18resubcld 11243 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) ∈ ℝ)
2016, 19readdcld 10845 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℝ)
2116recnd 10844 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2217recnd 10844 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2318recnd 10844 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℂ)
2421, 22, 23addsub12d 11195 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑀𝐼)) = (𝑀 + (𝑋𝐼)))
2522, 23, 21subsub2d 11201 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝐼𝑋)) = (𝑀 + (𝑋𝐼)))
2618, 16resubcld 11243 . . . . . . . . . . . . 13 (𝜑 → (𝐼𝑋) ∈ ℝ)
2716, 18posdifd 11402 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < 𝐼 ↔ 0 < (𝐼𝑋)))
288, 27mpbid 235 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐼𝑋))
2926, 28elrpd 12608 . . . . . . . . . . . 12 (𝜑 → (𝐼𝑋) ∈ ℝ+)
3017, 29ltsubrpd 12643 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝐼𝑋)) < 𝑀)
3125, 30eqbrtrrd 5067 . . . . . . . . . 10 (𝜑 → (𝑀 + (𝑋𝐼)) < 𝑀)
3224, 31eqbrtrd 5065 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑀𝐼)) < 𝑀)
3320, 32ltned 10951 . . . . . . . 8 (𝜑 → (𝑋 + (𝑀𝐼)) ≠ 𝑀)
3433adantr 484 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) ≠ 𝑀)
35 simpr 488 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → 𝑦 = (𝑋 + (𝑀𝐼)))
3635neeq1d 2994 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → (𝑦𝑀 ↔ (𝑋 + (𝑀𝐼)) ≠ 𝑀))
3734, 36mpbird 260 . . . . . 6 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → 𝑦𝑀)
3837neneqd 2940 . . . . 5 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → ¬ 𝑦 = 𝑀)
3938iffalsed 4440 . . . 4 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))
40 simpr 488 . . . . . . . . . . . 12 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝐼 ≤ (𝑋 + (𝑀𝐼)))
4118adantr 484 . . . . . . . . . . . . 13 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝐼 ∈ ℝ)
4216adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑋 ∈ ℝ)
4317adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑀 ∈ ℝ)
4443, 41resubcld 11243 . . . . . . . . . . . . . 14 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑀𝐼) ∈ ℝ)
4542, 44readdcld 10845 . . . . . . . . . . . . 13 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) ∈ ℝ)
4641, 45lenltd 10961 . . . . . . . . . . . 12 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝐼 ≤ (𝑋 + (𝑀𝐼)) ↔ ¬ (𝑋 + (𝑀𝐼)) < 𝐼))
4740, 46mpbid 235 . . . . . . . . . . 11 ((𝜑𝐼 ≤ (𝑋 + (𝑀𝐼))) → ¬ (𝑋 + (𝑀𝐼)) < 𝐼)
48473adant2 1133 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → ¬ (𝑋 + (𝑀𝐼)) < 𝐼)
49 simp2 1139 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑦 = (𝑋 + (𝑀𝐼)))
5049breq1d 5053 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑦 < 𝐼 ↔ (𝑋 + (𝑀𝐼)) < 𝐼))
5150notbid 321 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (¬ 𝑦 < 𝐼 ↔ ¬ (𝑋 + (𝑀𝐼)) < 𝐼))
5248, 51mpbird 260 . . . . . . . . 9 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → ¬ 𝑦 < 𝐼)
5352iffalsed 4440 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
5449oveq1d 7217 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑦 + 1) = ((𝑋 + (𝑀𝐼)) + 1))
5553, 54eqtrd 2774 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 1))
56 simp3 1140 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝐼 ≤ (𝑋 + (𝑀𝐼)))
5756iftrued 4437 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 1)
5857eqcomd 2740 . . . . . . . . 9 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 1 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
59 metakunt29.10 . . . . . . . . 9 𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
6058, 59eqtr4di 2792 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 1 = 𝐻)
6160oveq2d 7218 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → ((𝑋 + (𝑀𝐼)) + 1) = ((𝑋 + (𝑀𝐼)) + 𝐻))
6255, 61eqtrd 2774 . . . . . 6 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
63623expa 1120 . . . . 5 (((𝜑𝑦 = (𝑋 + (𝑀𝐼))) ∧ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
6420, 18ltnled 10962 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + (𝑀𝐼)) < 𝐼 ↔ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))))
6564biimprd 251 . . . . . . . . . . 11 (𝜑 → (¬ 𝐼 ≤ (𝑋 + (𝑀𝐼)) → (𝑋 + (𝑀𝐼)) < 𝐼))
6665imp 410 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) < 𝐼)
67663adant2 1133 . . . . . . . . 9 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) < 𝐼)
68 simp2 1139 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑦 = (𝑋 + (𝑀𝐼)))
6968breq1d 5053 . . . . . . . . 9 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑦 < 𝐼 ↔ (𝑋 + (𝑀𝐼)) < 𝐼))
7067, 69mpbird 260 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑦 < 𝐼)
7170iftrued 4437 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = 𝑦)
7221adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 𝑋 ∈ ℂ)
7322adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 𝑀 ∈ ℂ)
7423adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 𝐼 ∈ ℂ)
7573, 74subcld 11172 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → (𝑀𝐼) ∈ ℂ)
7672, 75addcld 10835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → (𝑋 + (𝑀𝐼)) ∈ ℂ)
7776addid1d 11015 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → ((𝑋 + (𝑀𝐼)) + 0) = (𝑋 + (𝑀𝐼)))
7877eqcomd 2740 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 0))
7964biimpa 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼)))
8079iffalsed 4440 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 0)
8180eqcomd 2740 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 0 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
8259a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
8382eqcomd 2740 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 𝐻)
8481, 83eqtrd 2774 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → 0 = 𝐻)
8584oveq2d 7218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → ((𝑋 + (𝑀𝐼)) + 0) = ((𝑋 + (𝑀𝐼)) + 𝐻))
8678, 85eqtrd 2774 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 + (𝑀𝐼)) < 𝐼) → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
8786ex 416 . . . . . . . . . . 11 (𝜑 → ((𝑋 + (𝑀𝐼)) < 𝐼 → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 𝐻)))
8865, 87syld 47 . . . . . . . . . 10 (𝜑 → (¬ 𝐼 ≤ (𝑋 + (𝑀𝐼)) → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 𝐻)))
8988imp 410 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
90893adant2 1133 . . . . . . . 8 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → (𝑋 + (𝑀𝐼)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
9168, 90eqtrd 2774 . . . . . . 7 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → 𝑦 = ((𝑋 + (𝑀𝐼)) + 𝐻))
9271, 91eqtrd 2774 . . . . . 6 ((𝜑𝑦 = (𝑋 + (𝑀𝐼)) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
93923expa 1120 . . . . 5 (((𝜑𝑦 = (𝑋 + (𝑀𝐼))) ∧ ¬ 𝐼 ≤ (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
9463, 93pm2.61dan 813 . . . 4 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋 + (𝑀𝐼)) + 𝐻))
9539, 94eqtrd 2774 . . 3 ((𝜑𝑦 = (𝑋 + (𝑀𝐼))) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
96 1zzd 12191 . . . 4 (𝜑 → 1 ∈ ℤ)
971nnzd 12264 . . . 4 (𝜑𝑀 ∈ ℤ)
9814nnzd 12264 . . . . 5 (𝜑𝑋 ∈ ℤ)
992nnzd 12264 . . . . . 6 (𝜑𝐼 ∈ ℤ)
10097, 99zsubcld 12270 . . . . 5 (𝜑 → (𝑀𝐼) ∈ ℤ)
10198, 100zaddcld 12269 . . . 4 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
102 1p0e1 11937 . . . . 5 (1 + 0) = 1
103 1red 10817 . . . . . 6 (𝜑 → 1 ∈ ℝ)
104 0red 10819 . . . . . 6 (𝜑 → 0 ∈ ℝ)
10514nnge1d 11861 . . . . . 6 (𝜑 → 1 ≤ 𝑋)
10617, 18subge0d 11405 . . . . . . 7 (𝜑 → (0 ≤ (𝑀𝐼) ↔ 𝐼𝑀))
1073, 106mpbird 260 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝐼))
108103, 104, 16, 19, 105, 107le2addd 11434 . . . . 5 (𝜑 → (1 + 0) ≤ (𝑋 + (𝑀𝐼)))
109102, 108eqbrtrrid 5079 . . . 4 (𝜑 → 1 ≤ (𝑋 + (𝑀𝐼)))
11020, 17, 32ltled 10963 . . . 4 (𝜑 → (𝑋 + (𝑀𝐼)) ≤ 𝑀)
11196, 97, 101, 109, 110elfzd 13086 . . 3 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ (1...𝑀))
112111elfzelzd 13096 . . . 4 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
113 0zd 12171 . . . . . 6 (𝜑 → 0 ∈ ℤ)
11496, 113ifcld 4475 . . . . 5 (𝜑 → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ)
11559a1i 11 . . . . . 6 (𝜑𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
116115eleq1d 2818 . . . . 5 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ))
117114, 116mpbird 260 . . . 4 (𝜑𝐻 ∈ ℤ)
118112, 117zaddcld 12269 . . 3 (𝜑 → ((𝑋 + (𝑀𝐼)) + 𝐻) ∈ ℤ)
11912, 95, 111, 118fvmptd 6814 . 2 (𝜑 → (𝐶‘(𝑋 + (𝑀𝐼))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
12010, 119eqtrd 2774 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  ifcif 4429   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  cz 12159  ...cfz 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079
This theorem is referenced by:  metakunt31  39829
  Copyright terms: Public domain W3C validator