Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt26 Structured version   Visualization version   GIF version

Theorem metakunt26 39366
 Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt26.1 (𝜑𝑀 ∈ ℕ)
metakunt26.2 (𝜑𝐼 ∈ ℕ)
metakunt26.3 (𝜑𝐼𝑀)
metakunt26.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt26.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt26.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt26.7 (𝜑𝑋 = 𝐼)
Assertion
Ref Expression
metakunt26 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
Distinct variable groups:   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐼(𝑥,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem metakunt26
StepHypRef Expression
1 metakunt26.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt26.7 . . . . . . . . . 10 (𝜑𝑋 = 𝐼)
43eqeq2d 2812 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑋𝑥 = 𝐼))
5 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
65iftrued 4436 . . . . . . . . . 10 ((𝜑𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
76ex 416 . . . . . . . . 9 (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
84, 7sylbid 243 . . . . . . . 8 (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
98imp 410 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
10 1zzd 12005 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
11 metakunt26.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
12 nnz 11996 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
1311, 12syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 metakunt26.2 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
1514nnzd 12078 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
1614nnge1d 11677 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐼)
17 metakunt26.3 . . . . . . . . 9 (𝜑𝐼𝑀)
1810, 13, 15, 16, 17elfzd 12897 . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑀))
193eleq1d 2877 . . . . . . . 8 (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀)))
2018, 19mpbird 260 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑀))
212, 9, 20, 11fvmptd 6756 . . . . . 6 (𝜑 → (𝐴𝑋) = 𝑀)
2221fveq2d 6653 . . . . 5 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵𝑀))
23 metakunt26.6 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2423a1i 11 . . . . . 6 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
25 simpr 488 . . . . . . 7 ((𝜑𝑧 = 𝑀) → 𝑧 = 𝑀)
2625iftrued 4436 . . . . . 6 ((𝜑𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀)
27 1zzd 12005 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ∈ ℤ)
28 nnge1 11657 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
29 nnre 11636 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3029leidd 11199 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀𝑀)
3127, 12, 12, 28, 30elfzd 12897 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀))
3211, 31syl 17 . . . . . 6 (𝜑𝑀 ∈ (1...𝑀))
3324, 26, 32, 11fvmptd 6756 . . . . 5 (𝜑 → (𝐵𝑀) = 𝑀)
3422, 33eqtrd 2836 . . . 4 (𝜑 → (𝐵‘(𝐴𝑋)) = 𝑀)
3534fveq2d 6653 . . 3 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶𝑀))
36 metakunt26.5 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
3736a1i 11 . . . 4 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
38 simpr 488 . . . . 5 ((𝜑𝑦 = 𝑀) → 𝑦 = 𝑀)
3938iftrued 4436 . . . 4 ((𝜑𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
4037, 39, 32, 14fvmptd 6756 . . 3 (𝜑 → (𝐶𝑀) = 𝐼)
4135, 40eqtrd 2836 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝐼)
423eqcomd 2807 . 2 (𝜑𝐼 = 𝑋)
4341, 42eqtrd 2836 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ifcif 4428   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  1c1 10531   + caddc 10533   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  ℤcz 11973  ...cfz 12889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-fz 12890 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator