Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt26 Structured version   Visualization version   GIF version

Theorem metakunt26 42187
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt26.1 (𝜑𝑀 ∈ ℕ)
metakunt26.2 (𝜑𝐼 ∈ ℕ)
metakunt26.3 (𝜑𝐼𝑀)
metakunt26.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt26.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt26.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt26.7 (𝜑𝑋 = 𝐼)
Assertion
Ref Expression
metakunt26 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
Distinct variable groups:   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐼(𝑥,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem metakunt26
StepHypRef Expression
1 metakunt26.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt26.7 . . . . . . . . . 10 (𝜑𝑋 = 𝐼)
43eqeq2d 2751 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑋𝑥 = 𝐼))
5 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
65iftrued 4556 . . . . . . . . . 10 ((𝜑𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
76ex 412 . . . . . . . . 9 (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
84, 7sylbid 240 . . . . . . . 8 (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
98imp 406 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
10 1zzd 12674 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
11 metakunt26.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
12 nnz 12660 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
1311, 12syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 metakunt26.2 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
1514nnzd 12666 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
1614nnge1d 12341 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐼)
17 metakunt26.3 . . . . . . . . 9 (𝜑𝐼𝑀)
1810, 13, 15, 16, 17elfzd 13575 . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑀))
193eleq1d 2829 . . . . . . . 8 (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀)))
2018, 19mpbird 257 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑀))
212, 9, 20, 11fvmptd 7036 . . . . . 6 (𝜑 → (𝐴𝑋) = 𝑀)
2221fveq2d 6924 . . . . 5 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵𝑀))
23 metakunt26.6 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2423a1i 11 . . . . . 6 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
25 simpr 484 . . . . . . 7 ((𝜑𝑧 = 𝑀) → 𝑧 = 𝑀)
2625iftrued 4556 . . . . . 6 ((𝜑𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀)
27 1zzd 12674 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ∈ ℤ)
28 nnge1 12321 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
29 nnre 12300 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3029leidd 11856 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀𝑀)
3127, 12, 12, 28, 30elfzd 13575 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀))
3211, 31syl 17 . . . . . 6 (𝜑𝑀 ∈ (1...𝑀))
3324, 26, 32, 11fvmptd 7036 . . . . 5 (𝜑 → (𝐵𝑀) = 𝑀)
3422, 33eqtrd 2780 . . . 4 (𝜑 → (𝐵‘(𝐴𝑋)) = 𝑀)
3534fveq2d 6924 . . 3 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶𝑀))
36 metakunt26.5 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
3736a1i 11 . . . 4 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
38 simpr 484 . . . . 5 ((𝜑𝑦 = 𝑀) → 𝑦 = 𝑀)
3938iftrued 4556 . . . 4 ((𝜑𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
4037, 39, 32, 14fvmptd 7036 . . 3 (𝜑 → (𝐶𝑀) = 𝐼)
4135, 40eqtrd 2780 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝐼)
423eqcomd 2746 . 2 (𝜑𝐼 = 𝑋)
4341, 42eqtrd 2780 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-fz 13568
This theorem is referenced by:  metakunt31  42192
  Copyright terms: Public domain W3C validator