![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt26 | Structured version Visualization version GIF version |
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.) |
Ref | Expression |
---|---|
metakunt26.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt26.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt26.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt26.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt26.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt26.6 | ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) |
metakunt26.7 | ⊢ (𝜑 → 𝑋 = 𝐼) |
Ref | Expression |
---|---|
metakunt26 | ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt26.4 | . . . . . . . 8 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
3 | metakunt26.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 = 𝐼) | |
4 | 3 | eqeq2d 2751 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝑋 ↔ 𝑥 = 𝐼)) |
5 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
6 | 5 | iftrued 4556 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
7 | 6 | ex 412 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
8 | 4, 7 | sylbid 240 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
10 | 1zzd 12674 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
11 | metakunt26.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | nnz 12660 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | metakunt26.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
15 | 14 | nnzd 12666 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
16 | 14 | nnge1d 12341 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
17 | metakunt26.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
18 | 10, 13, 15, 16, 17 | elfzd 13575 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
19 | 3 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀))) |
20 | 18, 19 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
21 | 2, 9, 20, 11 | fvmptd 7036 | . . . . . 6 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑀) |
22 | 21 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = (𝐵‘𝑀)) |
23 | metakunt26.6 | . . . . . . 7 ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))))) |
25 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → 𝑧 = 𝑀) | |
26 | 25 | iftrued 4556 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀) |
27 | 1zzd 12674 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ∈ ℤ) | |
28 | nnge1 12321 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ≤ 𝑀) | |
29 | nnre 12300 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
30 | 29 | leidd 11856 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ≤ 𝑀) |
31 | 27, 12, 12, 28, 30 | elfzd 13575 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀)) |
32 | 11, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
33 | 24, 26, 32, 11 | fvmptd 7036 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝑀) = 𝑀) |
34 | 22, 33 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = 𝑀) |
35 | 34 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = (𝐶‘𝑀)) |
36 | metakunt26.5 | . . . . 5 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
38 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀) | |
39 | 38 | iftrued 4556 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
40 | 37, 39, 32, 14 | fvmptd 7036 | . . 3 ⊢ (𝜑 → (𝐶‘𝑀) = 𝐼) |
41 | 35, 40 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝐼) |
42 | 3 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐼 = 𝑋) |
43 | 41, 42 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℤcz 12639 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-fz 13568 |
This theorem is referenced by: metakunt31 42192 |
Copyright terms: Public domain | W3C validator |