Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt26 Structured version   Visualization version   GIF version

Theorem metakunt26 42231
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt26.1 (𝜑𝑀 ∈ ℕ)
metakunt26.2 (𝜑𝐼 ∈ ℕ)
metakunt26.3 (𝜑𝐼𝑀)
metakunt26.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt26.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt26.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt26.7 (𝜑𝑋 = 𝐼)
Assertion
Ref Expression
metakunt26 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
Distinct variable groups:   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐼(𝑥,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem metakunt26
StepHypRef Expression
1 metakunt26.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt26.7 . . . . . . . . . 10 (𝜑𝑋 = 𝐼)
43eqeq2d 2748 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑋𝑥 = 𝐼))
5 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
65iftrued 4533 . . . . . . . . . 10 ((𝜑𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
76ex 412 . . . . . . . . 9 (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
84, 7sylbid 240 . . . . . . . 8 (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀))
98imp 406 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
10 1zzd 12648 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
11 metakunt26.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
12 nnz 12634 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
1311, 12syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 metakunt26.2 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
1514nnzd 12640 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
1614nnge1d 12314 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐼)
17 metakunt26.3 . . . . . . . . 9 (𝜑𝐼𝑀)
1810, 13, 15, 16, 17elfzd 13555 . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑀))
193eleq1d 2826 . . . . . . . 8 (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀)))
2018, 19mpbird 257 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑀))
212, 9, 20, 11fvmptd 7023 . . . . . 6 (𝜑 → (𝐴𝑋) = 𝑀)
2221fveq2d 6910 . . . . 5 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵𝑀))
23 metakunt26.6 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2423a1i 11 . . . . . 6 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
25 simpr 484 . . . . . . 7 ((𝜑𝑧 = 𝑀) → 𝑧 = 𝑀)
2625iftrued 4533 . . . . . 6 ((𝜑𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀)
27 1zzd 12648 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ∈ ℤ)
28 nnge1 12294 . . . . . . . 8 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
29 nnre 12273 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3029leidd 11829 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀𝑀)
3127, 12, 12, 28, 30elfzd 13555 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀))
3211, 31syl 17 . . . . . 6 (𝜑𝑀 ∈ (1...𝑀))
3324, 26, 32, 11fvmptd 7023 . . . . 5 (𝜑 → (𝐵𝑀) = 𝑀)
3422, 33eqtrd 2777 . . . 4 (𝜑 → (𝐵‘(𝐴𝑋)) = 𝑀)
3534fveq2d 6910 . . 3 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶𝑀))
36 metakunt26.5 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
3736a1i 11 . . . 4 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
38 simpr 484 . . . . 5 ((𝜑𝑦 = 𝑀) → 𝑦 = 𝑀)
3938iftrued 4533 . . . 4 ((𝜑𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
4037, 39, 32, 14fvmptd 7023 . . 3 (𝜑 → (𝐶𝑀) = 𝐼)
4135, 40eqtrd 2777 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝐼)
423eqcomd 2743 . 2 (𝜑𝐼 = 𝑋)
4341, 42eqtrd 2777 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-fz 13548
This theorem is referenced by:  metakunt31  42236
  Copyright terms: Public domain W3C validator