![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt26 | Structured version Visualization version GIF version |
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.) |
Ref | Expression |
---|---|
metakunt26.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt26.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt26.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt26.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt26.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt26.6 | ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) |
metakunt26.7 | ⊢ (𝜑 → 𝑋 = 𝐼) |
Ref | Expression |
---|---|
metakunt26 | ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt26.4 | . . . . . . . 8 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
3 | metakunt26.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 = 𝐼) | |
4 | 3 | eqeq2d 2746 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝑋 ↔ 𝑥 = 𝐼)) |
5 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
6 | 5 | iftrued 4539 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
7 | 6 | ex 412 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
8 | 4, 7 | sylbid 240 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
10 | 1zzd 12646 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
11 | metakunt26.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | nnz 12632 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | metakunt26.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
15 | 14 | nnzd 12638 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
16 | 14 | nnge1d 12312 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
17 | metakunt26.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
18 | 10, 13, 15, 16, 17 | elfzd 13552 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
19 | 3 | eleq1d 2824 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀))) |
20 | 18, 19 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
21 | 2, 9, 20, 11 | fvmptd 7023 | . . . . . 6 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑀) |
22 | 21 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = (𝐵‘𝑀)) |
23 | metakunt26.6 | . . . . . . 7 ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))))) |
25 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → 𝑧 = 𝑀) | |
26 | 25 | iftrued 4539 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀) |
27 | 1zzd 12646 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ∈ ℤ) | |
28 | nnge1 12292 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ≤ 𝑀) | |
29 | nnre 12271 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
30 | 29 | leidd 11827 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ≤ 𝑀) |
31 | 27, 12, 12, 28, 30 | elfzd 13552 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀)) |
32 | 11, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
33 | 24, 26, 32, 11 | fvmptd 7023 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝑀) = 𝑀) |
34 | 22, 33 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = 𝑀) |
35 | 34 | fveq2d 6911 | . . 3 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = (𝐶‘𝑀)) |
36 | metakunt26.5 | . . . . 5 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
38 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀) | |
39 | 38 | iftrued 4539 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
40 | 37, 39, 32, 14 | fvmptd 7023 | . . 3 ⊢ (𝜑 → (𝐶‘𝑀) = 𝐼) |
41 | 35, 40 | eqtrd 2775 | . 2 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝐼) |
42 | 3 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐼 = 𝑋) |
43 | 41, 42 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 − cmin 11490 ℕcn 12264 ℤcz 12611 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-fz 13545 |
This theorem is referenced by: metakunt31 42217 |
Copyright terms: Public domain | W3C validator |