Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt26 | Structured version Visualization version GIF version |
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.) |
Ref | Expression |
---|---|
metakunt26.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt26.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt26.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt26.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt26.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt26.6 | ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) |
metakunt26.7 | ⊢ (𝜑 → 𝑋 = 𝐼) |
Ref | Expression |
---|---|
metakunt26 | ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt26.4 | . . . . . . . 8 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
3 | metakunt26.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 = 𝐼) | |
4 | 3 | eqeq2d 2751 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝑋 ↔ 𝑥 = 𝐼)) |
5 | simpr 485 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
6 | 5 | iftrued 4473 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
7 | 6 | ex 413 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝐼 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
8 | 4, 7 | sylbid 239 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)) |
9 | 8 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
10 | 1zzd 12351 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
11 | metakunt26.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | nnz 12342 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | metakunt26.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
15 | 14 | nnzd 12424 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
16 | 14 | nnge1d 12021 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
17 | metakunt26.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
18 | 10, 13, 15, 16, 17 | elfzd 13246 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
19 | 3 | eleq1d 2825 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (1...𝑀) ↔ 𝐼 ∈ (1...𝑀))) |
20 | 18, 19 | mpbird 256 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
21 | 2, 9, 20, 11 | fvmptd 6879 | . . . . . 6 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑀) |
22 | 21 | fveq2d 6775 | . . . . 5 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = (𝐵‘𝑀)) |
23 | metakunt26.6 | . . . . . . 7 ⊢ 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼))))) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))))) |
25 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → 𝑧 = 𝑀) | |
26 | 25 | iftrued 4473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 𝑀) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀 − 𝐼)), (𝑧 + (1 − 𝐼)))) = 𝑀) |
27 | 1zzd 12351 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ∈ ℤ) | |
28 | nnge1 12001 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 1 ≤ 𝑀) | |
29 | nnre 11980 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
30 | 29 | leidd 11541 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ≤ 𝑀) |
31 | 27, 12, 12, 28, 30 | elfzd 13246 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (1...𝑀)) |
32 | 11, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
33 | 24, 26, 32, 11 | fvmptd 6879 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝑀) = 𝑀) |
34 | 22, 33 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → (𝐵‘(𝐴‘𝑋)) = 𝑀) |
35 | 34 | fveq2d 6775 | . . 3 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = (𝐶‘𝑀)) |
36 | metakunt26.5 | . . . . 5 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
38 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀) | |
39 | 38 | iftrued 4473 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
40 | 37, 39, 32, 14 | fvmptd 6879 | . . 3 ⊢ (𝜑 → (𝐶‘𝑀) = 𝐼) |
41 | 35, 40 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝐼) |
42 | 3 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐼 = 𝑋) |
43 | 41, 42 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐶‘(𝐵‘(𝐴‘𝑋))) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 1c1 10873 + caddc 10875 < clt 11010 ≤ cle 11011 − cmin 11205 ℕcn 11973 ℤcz 12319 ...cfz 13238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-fz 13239 |
This theorem is referenced by: metakunt31 40152 |
Copyright terms: Public domain | W3C validator |