Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt32 Structured version   Visualization version   GIF version

Theorem metakunt32 41016
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt32.1 (𝜑𝑀 ∈ ℕ)
metakunt32.2 (𝜑𝐼 ∈ ℕ)
metakunt32.3 (𝜑𝐼𝑀)
metakunt32.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt32.5 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
metakunt32.6 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt32.7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt32.8 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt32 (𝜑 → (𝐷𝑋) = 𝑅)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑅   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt32
StepHypRef Expression
1 metakunt32.5 . . 3 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
21a1i 11 . 2 (𝜑𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))))))
3 simpr 486 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43eqeq1d 2735 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
53breq1d 5159 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
6 oveq1 7416 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
76adantl 483 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
87breq2d 5161 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥 + (𝑀𝐼)) ↔ 𝐼 ≤ (𝑋 + (𝑀𝐼))))
98ifbid 4552 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
107, 9oveq12d 7427 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)))
11 metakunt32.6 . . . . . . . . 9 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
1312eqcomd 2739 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 𝐺)
1413oveq2d 7425 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
1510, 14eqtrd 2773 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
163oveq1d 7424 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥𝐼) = (𝑋𝐼))
1716breq2d 5161 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥𝐼) ↔ 𝐼 ≤ (𝑋𝐼)))
1817ifbid 4552 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥𝐼), 1, 0) = if(𝐼 ≤ (𝑋𝐼), 1, 0))
1916, 18oveq12d 7427 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)))
20 metakunt32.7 . . . . . . . . 9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
2120a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
2221eqcomd 2739 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
2322oveq2d 7425 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
2419, 23eqtrd 2773 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
255, 15, 24ifbieq12d 4557 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
264, 3, 25ifbieq12d 4557 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
27 metakunt32.8 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2827a1i 11 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
2928eqcomd 2739 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3026, 29eqtrd 2773 . 2 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = 𝑅)
31 metakunt32.4 . 2 (𝜑𝑋 ∈ (1...𝑀))
3231elfzelzd 13502 . . . 4 (𝜑𝑋 ∈ ℤ)
33 metakunt32.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3433nnzd 12585 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 metakunt32.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
3635nnzd 12585 . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
3734, 36zsubcld 12671 . . . . . . 7 (𝜑 → (𝑀𝐼) ∈ ℤ)
3832, 37zaddcld 12670 . . . . . 6 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
39 1zzd 12593 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
40 0zd 12570 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
4139, 40ifcld 4575 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ)
4211a1i 11 . . . . . . . 8 (𝜑𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
4342eleq1d 2819 . . . . . . 7 (𝜑 → (𝐺 ∈ ℤ ↔ if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ))
4441, 43mpbird 257 . . . . . 6 (𝜑𝐺 ∈ ℤ)
4538, 44zaddcld 12670 . . . . 5 (𝜑 → ((𝑋 + (𝑀𝐼)) + 𝐺) ∈ ℤ)
4632, 36zsubcld 12671 . . . . . 6 (𝜑 → (𝑋𝐼) ∈ ℤ)
4739, 40ifcld 4575 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
4820a1i 11 . . . . . . . 8 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4948eleq1d 2819 . . . . . . 7 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
5047, 49mpbird 257 . . . . . 6 (𝜑𝐻 ∈ ℤ)
5146, 50zaddcld 12670 . . . . 5 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
5245, 51ifcld 4575 . . . 4 (𝜑 → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) ∈ ℤ)
5332, 52ifcld 4575 . . 3 (𝜑 → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ)
5427a1i 11 . . . 4 (𝜑𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
5554eleq1d 2819 . . 3 (𝜑 → (𝑅 ∈ ℤ ↔ if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ))
5653, 55mpbird 257 . 2 (𝜑𝑅 ∈ ℤ)
572, 30, 31, 56fvmptd 7006 1 (𝜑 → (𝐷𝑋) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4529   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cn 12212  cz 12558  ...cfz 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485
This theorem is referenced by:  metakunt33  41017
  Copyright terms: Public domain W3C validator