Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt32 Structured version   Visualization version   GIF version

Theorem metakunt32 41743
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt32.1 (𝜑𝑀 ∈ ℕ)
metakunt32.2 (𝜑𝐼 ∈ ℕ)
metakunt32.3 (𝜑𝐼𝑀)
metakunt32.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt32.5 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
metakunt32.6 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt32.7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt32.8 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt32 (𝜑 → (𝐷𝑋) = 𝑅)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑅   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt32
StepHypRef Expression
1 metakunt32.5 . . 3 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
21a1i 11 . 2 (𝜑𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))))))
3 simpr 483 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43eqeq1d 2727 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
53breq1d 5153 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
6 oveq1 7422 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
76adantl 480 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
87breq2d 5155 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥 + (𝑀𝐼)) ↔ 𝐼 ≤ (𝑋 + (𝑀𝐼))))
98ifbid 4547 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
107, 9oveq12d 7433 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)))
11 metakunt32.6 . . . . . . . . 9 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
1312eqcomd 2731 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 𝐺)
1413oveq2d 7431 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
1510, 14eqtrd 2765 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
163oveq1d 7430 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥𝐼) = (𝑋𝐼))
1716breq2d 5155 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥𝐼) ↔ 𝐼 ≤ (𝑋𝐼)))
1817ifbid 4547 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥𝐼), 1, 0) = if(𝐼 ≤ (𝑋𝐼), 1, 0))
1916, 18oveq12d 7433 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)))
20 metakunt32.7 . . . . . . . . 9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
2120a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
2221eqcomd 2731 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
2322oveq2d 7431 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
2419, 23eqtrd 2765 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
255, 15, 24ifbieq12d 4552 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
264, 3, 25ifbieq12d 4552 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
27 metakunt32.8 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2827a1i 11 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
2928eqcomd 2731 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3026, 29eqtrd 2765 . 2 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = 𝑅)
31 metakunt32.4 . 2 (𝜑𝑋 ∈ (1...𝑀))
3231elfzelzd 13532 . . . 4 (𝜑𝑋 ∈ ℤ)
33 metakunt32.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3433nnzd 12613 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 metakunt32.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
3635nnzd 12613 . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
3734, 36zsubcld 12699 . . . . . . 7 (𝜑 → (𝑀𝐼) ∈ ℤ)
3832, 37zaddcld 12698 . . . . . 6 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
39 1zzd 12621 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
40 0zd 12598 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
4139, 40ifcld 4570 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ)
4211a1i 11 . . . . . . . 8 (𝜑𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
4342eleq1d 2810 . . . . . . 7 (𝜑 → (𝐺 ∈ ℤ ↔ if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ))
4441, 43mpbird 256 . . . . . 6 (𝜑𝐺 ∈ ℤ)
4538, 44zaddcld 12698 . . . . 5 (𝜑 → ((𝑋 + (𝑀𝐼)) + 𝐺) ∈ ℤ)
4632, 36zsubcld 12699 . . . . . 6 (𝜑 → (𝑋𝐼) ∈ ℤ)
4739, 40ifcld 4570 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
4820a1i 11 . . . . . . . 8 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4948eleq1d 2810 . . . . . . 7 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
5047, 49mpbird 256 . . . . . 6 (𝜑𝐻 ∈ ℤ)
5146, 50zaddcld 12698 . . . . 5 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
5245, 51ifcld 4570 . . . 4 (𝜑 → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) ∈ ℤ)
5332, 52ifcld 4570 . . 3 (𝜑 → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ)
5427a1i 11 . . . 4 (𝜑𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
5554eleq1d 2810 . . 3 (𝜑 → (𝑅 ∈ ℤ ↔ if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ))
5653, 55mpbird 256 . 2 (𝜑𝑅 ∈ ℤ)
572, 30, 31, 56fvmptd 7006 1 (𝜑 → (𝐷𝑋) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  ifcif 4524   class class class wbr 5143  cmpt 5226  cfv 6542  (class class class)co 7415  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cmin 11472  cn 12240  cz 12586  ...cfz 13514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515
This theorem is referenced by:  metakunt33  41744
  Copyright terms: Public domain W3C validator