Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt32 Structured version   Visualization version   GIF version

Theorem metakunt32 39448
 Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt32.1 (𝜑𝑀 ∈ ℕ)
metakunt32.2 (𝜑𝐼 ∈ ℕ)
metakunt32.3 (𝜑𝐼𝑀)
metakunt32.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt32.5 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
metakunt32.6 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt32.7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt32.8 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt32 (𝜑 → (𝐷𝑋) = 𝑅)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑅   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt32
StepHypRef Expression
1 metakunt32.5 . . 3 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
21a1i 11 . 2 (𝜑𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))))))
3 simpr 488 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43eqeq1d 2800 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
53breq1d 5043 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
6 oveq1 7149 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
76adantl 485 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
87breq2d 5045 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥 + (𝑀𝐼)) ↔ 𝐼 ≤ (𝑋 + (𝑀𝐼))))
98ifbid 4449 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
107, 9oveq12d 7160 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)))
11 metakunt32.6 . . . . . . . . 9 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
1312eqcomd 2804 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 𝐺)
1413oveq2d 7158 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
1510, 14eqtrd 2833 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
163oveq1d 7157 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥𝐼) = (𝑋𝐼))
1716breq2d 5045 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥𝐼) ↔ 𝐼 ≤ (𝑋𝐼)))
1817ifbid 4449 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥𝐼), 1, 0) = if(𝐼 ≤ (𝑋𝐼), 1, 0))
1916, 18oveq12d 7160 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)))
20 metakunt32.7 . . . . . . . . 9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
2120a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
2221eqcomd 2804 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
2322oveq2d 7158 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
2419, 23eqtrd 2833 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
255, 15, 24ifbieq12d 4454 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
264, 3, 25ifbieq12d 4454 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
27 metakunt32.8 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2827a1i 11 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
2928eqcomd 2804 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3026, 29eqtrd 2833 . 2 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = 𝑅)
31 metakunt32.4 . 2 (𝜑𝑋 ∈ (1...𝑀))
3231elfzelzd 12920 . . . 4 (𝜑𝑋 ∈ ℤ)
33 metakunt32.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3433nnzd 12091 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 metakunt32.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
3635nnzd 12091 . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
3734, 36zsubcld 12097 . . . . . . 7 (𝜑 → (𝑀𝐼) ∈ ℤ)
3832, 37zaddcld 12096 . . . . . 6 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
39 1zzd 12018 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
40 0zd 11998 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
4139, 40ifcld 4472 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ)
4211a1i 11 . . . . . . . 8 (𝜑𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
4342eleq1d 2874 . . . . . . 7 (𝜑 → (𝐺 ∈ ℤ ↔ if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ))
4441, 43mpbird 260 . . . . . 6 (𝜑𝐺 ∈ ℤ)
4538, 44zaddcld 12096 . . . . 5 (𝜑 → ((𝑋 + (𝑀𝐼)) + 𝐺) ∈ ℤ)
4632, 36zsubcld 12097 . . . . . 6 (𝜑 → (𝑋𝐼) ∈ ℤ)
4739, 40ifcld 4472 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
4820a1i 11 . . . . . . . 8 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4948eleq1d 2874 . . . . . . 7 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
5047, 49mpbird 260 . . . . . 6 (𝜑𝐻 ∈ ℤ)
5146, 50zaddcld 12096 . . . . 5 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
5245, 51ifcld 4472 . . . 4 (𝜑 → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) ∈ ℤ)
5332, 52ifcld 4472 . . 3 (𝜑 → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ)
5427a1i 11 . . . 4 (𝜑𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
5554eleq1d 2874 . . 3 (𝜑 → (𝑅 ∈ ℤ ↔ if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ))
5653, 55mpbird 260 . 2 (𝜑𝑅 ∈ ℤ)
572, 30, 31, 56fvmptd 6759 1 (𝜑 → (𝐷𝑋) = 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ifcif 4427   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6329  (class class class)co 7142  0cc0 10541  1c1 10542   + caddc 10544   < clt 10679   ≤ cle 10680   − cmin 10874  ℕcn 11640  ℤcz 11986  ...cfz 12902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-n0 11901  df-z 11987  df-uz 12249  df-fz 12903 This theorem is referenced by:  metakunt33  39449
 Copyright terms: Public domain W3C validator