Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt32 Structured version   Visualization version   GIF version

Theorem metakunt32 42238
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt32.1 (𝜑𝑀 ∈ ℕ)
metakunt32.2 (𝜑𝐼 ∈ ℕ)
metakunt32.3 (𝜑𝐼𝑀)
metakunt32.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt32.5 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
metakunt32.6 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
metakunt32.7 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
metakunt32.8 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
Assertion
Ref Expression
metakunt32 (𝜑 → (𝐷𝑋) = 𝑅)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑅   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt32
StepHypRef Expression
1 metakunt32.5 . . 3 𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))
21a1i 11 . 2 (𝜑𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))))))
3 simpr 484 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43eqeq1d 2738 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
53breq1d 5152 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
6 oveq1 7439 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
76adantl 481 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
87breq2d 5154 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥 + (𝑀𝐼)) ↔ 𝐼 ≤ (𝑋 + (𝑀𝐼))))
98ifbid 4548 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
107, 9oveq12d 7450 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)))
11 metakunt32.6 . . . . . . . . 9 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
1312eqcomd 2742 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) = 𝐺)
1413oveq2d 7448 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋 + (𝑀𝐼)) + if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
1510, 14eqtrd 2776 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)) = ((𝑋 + (𝑀𝐼)) + 𝐺))
163oveq1d 7447 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑥𝐼) = (𝑋𝐼))
1716breq2d 5154 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐼 ≤ (𝑥𝐼) ↔ 𝐼 ≤ (𝑋𝐼)))
1817ifbid 4548 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑥𝐼), 1, 0) = if(𝐼 ≤ (𝑋𝐼), 1, 0))
1916, 18oveq12d 7450 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)))
20 metakunt32.7 . . . . . . . . 9 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
2120a1i 11 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
2221eqcomd 2742 . . . . . . 7 ((𝜑𝑥 = 𝑋) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
2322oveq2d 7448 . . . . . 6 ((𝜑𝑥 = 𝑋) → ((𝑋𝐼) + if(𝐼 ≤ (𝑋𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
2419, 23eqtrd 2776 . . . . 5 ((𝜑𝑥 = 𝑋) → ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)) = ((𝑋𝐼) + 𝐻))
255, 15, 24ifbieq12d 4553 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0))) = if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
264, 3, 25ifbieq12d 4553 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
27 metakunt32.8 . . . . 5 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))
2827a1i 11 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
2928eqcomd 2742 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) = 𝑅)
3026, 29eqtrd 2776 . 2 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))) = 𝑅)
31 metakunt32.4 . 2 (𝜑𝑋 ∈ (1...𝑀))
3231elfzelzd 13566 . . . 4 (𝜑𝑋 ∈ ℤ)
33 metakunt32.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3433nnzd 12642 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 metakunt32.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
3635nnzd 12642 . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
3734, 36zsubcld 12729 . . . . . . 7 (𝜑 → (𝑀𝐼) ∈ ℤ)
3832, 37zaddcld 12728 . . . . . 6 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
39 1zzd 12650 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
40 0zd 12627 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
4139, 40ifcld 4571 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ)
4211a1i 11 . . . . . . . 8 (𝜑𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0))
4342eleq1d 2825 . . . . . . 7 (𝜑 → (𝐺 ∈ ℤ ↔ if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0) ∈ ℤ))
4441, 43mpbird 257 . . . . . 6 (𝜑𝐺 ∈ ℤ)
4538, 44zaddcld 12728 . . . . 5 (𝜑 → ((𝑋 + (𝑀𝐼)) + 𝐺) ∈ ℤ)
4632, 36zsubcld 12729 . . . . . 6 (𝜑 → (𝑋𝐼) ∈ ℤ)
4739, 40ifcld 4571 . . . . . . 7 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
4820a1i 11 . . . . . . . 8 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4948eleq1d 2825 . . . . . . 7 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
5047, 49mpbird 257 . . . . . 6 (𝜑𝐻 ∈ ℤ)
5146, 50zaddcld 12728 . . . . 5 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
5245, 51ifcld 4571 . . . 4 (𝜑 → if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)) ∈ ℤ)
5332, 52ifcld 4571 . . 3 (𝜑 → if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ)
5427a1i 11 . . . 4 (𝜑𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))))
5554eleq1d 2825 . . 3 (𝜑 → (𝑅 ∈ ℤ ↔ if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻))) ∈ ℤ))
5653, 55mpbird 257 . 2 (𝜑𝑅 ∈ ℤ)
572, 30, 31, 56fvmptd 7022 1 (𝜑 → (𝐷𝑋) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4524   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  cz 12615  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549
This theorem is referenced by:  metakunt33  42239
  Copyright terms: Public domain W3C validator