Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt6 Structured version   Visualization version   GIF version

Theorem metakunt6 39637
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt6.1 (𝜑𝑀 ∈ ℕ)
metakunt6.2 (𝜑𝐼 ∈ ℕ)
metakunt6.3 (𝜑𝐼𝑀)
metakunt6.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt6.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt6.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt6
StepHypRef Expression
1 metakunt6.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 metakunt6.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
43a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
5 id 22 . . . . . . . . . . 11 (𝑥 = 𝑋𝑥 = 𝑋)
65eqeq1d 2761 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
7 breq1 5028 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
8 oveq1 7150 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
97, 5, 8ifbieq12d 4441 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
106, 9ifbieq2d 4439 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
1110adantl 486 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
12 metakunt6.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
13 elfznn 12970 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
1514nnred 11674 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1615adantr 485 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
17 simpr 489 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
1816, 17ltned 10799 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
19 df-ne 2950 . . . . . . . . . . . 12 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
2018, 19sylib 221 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
21 iffalse 4422 . . . . . . . . . . 11 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
23 iftrue 4419 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2423adantl 486 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2522, 24eqtrd 2794 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2625adantr 485 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2711, 26eqtrd 2794 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
2812adantr 485 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
294, 27, 28, 28fvmptd 6759 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋)
30 eqcom 2766 . . . . . . 7 ((𝐴𝑋) = 𝑋𝑋 = (𝐴𝑋))
3130imbi2i 340 . . . . . 6 (((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋) ↔ ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋)))
3229, 31mpbi 233 . . . . 5 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋))
3332eqeq2d 2770 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋𝑦 = (𝐴𝑋)))
34 eqeq1 2763 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
35 breq1 5028 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
36 id 22 . . . . . . . . 9 (𝑦 = 𝑋𝑦 = 𝑋)
37 oveq1 7150 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3835, 36, 37ifbieq12d 4441 . . . . . . . 8 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3934, 38ifbieq2d 4439 . . . . . . 7 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
4039adantl 486 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
41 metakunt6.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4241nnred 11674 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
4342adantr 485 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
44 metakunt6.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
4544nnred 11674 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4645adantr 485 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
47 metakunt6.3 . . . . . . . . . . . . 13 (𝜑𝐼𝑀)
4847adantr 485 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
4916, 43, 46, 17, 48ltletrd 10823 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
5016, 49ltned 10799 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
5150neneqd 2954 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
52 iffalse 4422 . . . . . . . . 9 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
54 iftrue 4419 . . . . . . . . 9 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5554adantl 486 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5653, 55eqtrd 2794 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5756adantr 485 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5840, 57eqtrd 2794 . . . . 5 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
5958ex 417 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6033, 59sylbird 263 . . 3 ((𝜑𝑋 < 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6160imp 411 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
6244adantr 485 . . . 4 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℕ)
6341adantr 485 . . . 4 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℕ)
6462, 63, 48, 3metakunt1 39632 . . 3 ((𝜑𝑋 < 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
6564, 28ffvelrnd 6836 . 2 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
662, 61, 65, 28fvmptd 6759 1 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2949  ifcif 4413   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  cr 10559  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925
This theorem is referenced by:  metakunt9  39640
  Copyright terms: Public domain W3C validator