Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt6 Structured version   Visualization version   GIF version

Theorem metakunt6 40628
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt6.1 (𝜑𝑀 ∈ ℕ)
metakunt6.2 (𝜑𝐼 ∈ ℕ)
metakunt6.3 (𝜑𝐼𝑀)
metakunt6.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt6.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt6.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt6
StepHypRef Expression
1 metakunt6.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 metakunt6.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
43a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
5 id 22 . . . . . . . . . . 11 (𝑥 = 𝑋𝑥 = 𝑋)
65eqeq1d 2735 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
7 breq1 5109 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
8 oveq1 7365 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
97, 5, 8ifbieq12d 4515 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
106, 9ifbieq2d 4513 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
1110adantl 483 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
12 metakunt6.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
13 elfznn 13476 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
1514nnred 12173 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1615adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
17 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
1816, 17ltned 11296 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
19 df-ne 2941 . . . . . . . . . . . 12 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
2018, 19sylib 217 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
21 iffalse 4496 . . . . . . . . . . 11 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
23 iftrue 4493 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2423adantl 483 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2522, 24eqtrd 2773 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2625adantr 482 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2711, 26eqtrd 2773 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
2812adantr 482 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
294, 27, 28, 28fvmptd 6956 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋)
30 eqcom 2740 . . . . . . 7 ((𝐴𝑋) = 𝑋𝑋 = (𝐴𝑋))
3130imbi2i 336 . . . . . 6 (((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋) ↔ ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋)))
3229, 31mpbi 229 . . . . 5 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋))
3332eqeq2d 2744 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋𝑦 = (𝐴𝑋)))
34 eqeq1 2737 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
35 breq1 5109 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
36 id 22 . . . . . . . . 9 (𝑦 = 𝑋𝑦 = 𝑋)
37 oveq1 7365 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3835, 36, 37ifbieq12d 4515 . . . . . . . 8 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3934, 38ifbieq2d 4513 . . . . . . 7 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
4039adantl 483 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
41 metakunt6.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4241nnred 12173 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
4342adantr 482 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
44 metakunt6.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
4544nnred 12173 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4645adantr 482 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
47 metakunt6.3 . . . . . . . . . . . . 13 (𝜑𝐼𝑀)
4847adantr 482 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
4916, 43, 46, 17, 48ltletrd 11320 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
5016, 49ltned 11296 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
5150neneqd 2945 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
52 iffalse 4496 . . . . . . . . 9 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
54 iftrue 4493 . . . . . . . . 9 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5554adantl 483 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5653, 55eqtrd 2773 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5756adantr 482 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5840, 57eqtrd 2773 . . . . 5 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
5958ex 414 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6033, 59sylbird 260 . . 3 ((𝜑𝑋 < 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6160imp 408 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
6244adantr 482 . . . 4 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℕ)
6341adantr 482 . . . 4 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℕ)
6462, 63, 48, 3metakunt1 40623 . . 3 ((𝜑𝑋 < 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
6564, 28ffvelcdmd 7037 . 2 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
662, 61, 65, 28fvmptd 6956 1 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  ifcif 4487   class class class wbr 5106  cmpt 5189  cfv 6497  (class class class)co 7358  cr 11055  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390  cn 12158  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431
This theorem is referenced by:  metakunt9  40631
  Copyright terms: Public domain W3C validator