Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt6 Structured version   Visualization version   GIF version

Theorem metakunt6 40058
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt6.1 (𝜑𝑀 ∈ ℕ)
metakunt6.2 (𝜑𝐼 ∈ ℕ)
metakunt6.3 (𝜑𝐼𝑀)
metakunt6.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt6.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt6.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt6
StepHypRef Expression
1 metakunt6.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 metakunt6.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
43a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
5 id 22 . . . . . . . . . . 11 (𝑥 = 𝑋𝑥 = 𝑋)
65eqeq1d 2740 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
7 breq1 5073 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
8 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
97, 5, 8ifbieq12d 4484 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
106, 9ifbieq2d 4482 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
1110adantl 481 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
12 metakunt6.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
13 elfznn 13214 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
1514nnred 11918 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
17 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
1816, 17ltned 11041 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
19 df-ne 2943 . . . . . . . . . . . 12 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
2018, 19sylib 217 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
21 iffalse 4465 . . . . . . . . . . 11 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
23 iftrue 4462 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2423adantl 481 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2522, 24eqtrd 2778 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2625adantr 480 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2711, 26eqtrd 2778 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
2812adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
294, 27, 28, 28fvmptd 6864 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋)
30 eqcom 2745 . . . . . . 7 ((𝐴𝑋) = 𝑋𝑋 = (𝐴𝑋))
3130imbi2i 335 . . . . . 6 (((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋) ↔ ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋)))
3229, 31mpbi 229 . . . . 5 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋))
3332eqeq2d 2749 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋𝑦 = (𝐴𝑋)))
34 eqeq1 2742 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
35 breq1 5073 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
36 id 22 . . . . . . . . 9 (𝑦 = 𝑋𝑦 = 𝑋)
37 oveq1 7262 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3835, 36, 37ifbieq12d 4484 . . . . . . . 8 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3934, 38ifbieq2d 4482 . . . . . . 7 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
4039adantl 481 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
41 metakunt6.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4241nnred 11918 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
4342adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
44 metakunt6.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
4544nnred 11918 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
47 metakunt6.3 . . . . . . . . . . . . 13 (𝜑𝐼𝑀)
4847adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
4916, 43, 46, 17, 48ltletrd 11065 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
5016, 49ltned 11041 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
5150neneqd 2947 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
52 iffalse 4465 . . . . . . . . 9 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
54 iftrue 4462 . . . . . . . . 9 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5554adantl 481 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5653, 55eqtrd 2778 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5756adantr 480 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5840, 57eqtrd 2778 . . . . 5 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
5958ex 412 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6033, 59sylbird 259 . . 3 ((𝜑𝑋 < 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6160imp 406 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
6244adantr 480 . . . 4 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℕ)
6341adantr 480 . . . 4 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℕ)
6462, 63, 48, 3metakunt1 40053 . . 3 ((𝜑𝑋 < 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
6564, 28ffvelrnd 6944 . 2 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
662, 61, 65, 28fvmptd 6864 1 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  metakunt9  40061
  Copyright terms: Public domain W3C validator