Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt6 Structured version   Visualization version   GIF version

Theorem metakunt6 41718
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt6.1 (𝜑𝑀 ∈ ℕ)
metakunt6.2 (𝜑𝐼 ∈ ℕ)
metakunt6.3 (𝜑𝐼𝑀)
metakunt6.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt6.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt6.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt6
StepHypRef Expression
1 metakunt6.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 metakunt6.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
43a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
5 id 22 . . . . . . . . . . 11 (𝑥 = 𝑋𝑥 = 𝑋)
65eqeq1d 2727 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
7 breq1 5146 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
8 oveq1 7423 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
97, 5, 8ifbieq12d 4552 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
106, 9ifbieq2d 4550 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
1110adantl 480 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
12 metakunt6.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
13 elfznn 13562 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
1514nnred 12257 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1615adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
17 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
1816, 17ltned 11380 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
19 df-ne 2931 . . . . . . . . . . . 12 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
2018, 19sylib 217 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
21 iffalse 4533 . . . . . . . . . . 11 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
23 iftrue 4530 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2423adantl 480 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2522, 24eqtrd 2765 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2625adantr 479 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2711, 26eqtrd 2765 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
2812adantr 479 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
294, 27, 28, 28fvmptd 7007 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋)
30 eqcom 2732 . . . . . . 7 ((𝐴𝑋) = 𝑋𝑋 = (𝐴𝑋))
3130imbi2i 335 . . . . . 6 (((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋) ↔ ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋)))
3229, 31mpbi 229 . . . . 5 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋))
3332eqeq2d 2736 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋𝑦 = (𝐴𝑋)))
34 eqeq1 2729 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
35 breq1 5146 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
36 id 22 . . . . . . . . 9 (𝑦 = 𝑋𝑦 = 𝑋)
37 oveq1 7423 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3835, 36, 37ifbieq12d 4552 . . . . . . . 8 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3934, 38ifbieq2d 4550 . . . . . . 7 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
4039adantl 480 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
41 metakunt6.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4241nnred 12257 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
4342adantr 479 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
44 metakunt6.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
4544nnred 12257 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4645adantr 479 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
47 metakunt6.3 . . . . . . . . . . . . 13 (𝜑𝐼𝑀)
4847adantr 479 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
4916, 43, 46, 17, 48ltletrd 11404 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
5016, 49ltned 11380 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
5150neneqd 2935 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
52 iffalse 4533 . . . . . . . . 9 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
54 iftrue 4530 . . . . . . . . 9 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5554adantl 480 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5653, 55eqtrd 2765 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5756adantr 479 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5840, 57eqtrd 2765 . . . . 5 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
5958ex 411 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6033, 59sylbird 259 . . 3 ((𝜑𝑋 < 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6160imp 405 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
6244adantr 479 . . . 4 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℕ)
6341adantr 479 . . . 4 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℕ)
6462, 63, 48, 3metakunt1 41713 . . 3 ((𝜑𝑋 < 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
6564, 28ffvelcdmd 7090 . 2 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
662, 61, 65, 28fvmptd 7007 1 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  ifcif 4524   class class class wbr 5143  cmpt 5226  cfv 6543  (class class class)co 7416  cr 11137  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474  cn 12242  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517
This theorem is referenced by:  metakunt9  41721
  Copyright terms: Public domain W3C validator