Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt6 Structured version   Visualization version   GIF version

Theorem metakunt6 40978
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt6.1 (𝜑𝑀 ∈ ℕ)
metakunt6.2 (𝜑𝐼 ∈ ℕ)
metakunt6.3 (𝜑𝐼𝑀)
metakunt6.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt6.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt6.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt6
StepHypRef Expression
1 metakunt6.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 < 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 metakunt6.4 . . . . . . . 8 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
43a1i 11 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
5 id 22 . . . . . . . . . . 11 (𝑥 = 𝑋𝑥 = 𝑋)
65eqeq1d 2734 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
7 breq1 5150 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
8 oveq1 7412 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
97, 5, 8ifbieq12d 4555 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
106, 9ifbieq2d 4553 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
1110adantl 482 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
12 metakunt6.6 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (1...𝑀))
13 elfznn 13526 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℕ)
1514nnred 12223 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1615adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ ℝ)
17 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝐼)
1816, 17ltned 11346 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑋𝐼)
19 df-ne 2941 . . . . . . . . . . . 12 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
2018, 19sylib 217 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝐼)
21 iffalse 4536 . . . . . . . . . . 11 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
23 iftrue 4533 . . . . . . . . . . 11 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2423adantl 482 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = 𝑋)
2522, 24eqtrd 2772 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2625adantr 481 . . . . . . . 8 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = 𝑋)
2711, 26eqtrd 2772 . . . . . . 7 (((𝜑𝑋 < 𝐼) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
2812adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀))
294, 27, 28, 28fvmptd 7002 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋)
30 eqcom 2739 . . . . . . 7 ((𝐴𝑋) = 𝑋𝑋 = (𝐴𝑋))
3130imbi2i 335 . . . . . 6 (((𝜑𝑋 < 𝐼) → (𝐴𝑋) = 𝑋) ↔ ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋)))
3229, 31mpbi 229 . . . . 5 ((𝜑𝑋 < 𝐼) → 𝑋 = (𝐴𝑋))
3332eqeq2d 2743 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋𝑦 = (𝐴𝑋)))
34 eqeq1 2736 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = 𝑀𝑋 = 𝑀))
35 breq1 5150 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 < 𝐼𝑋 < 𝐼))
36 id 22 . . . . . . . . 9 (𝑦 = 𝑋𝑦 = 𝑋)
37 oveq1 7412 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3835, 36, 37ifbieq12d 4555 . . . . . . . 8 (𝑦 = 𝑋 → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
3934, 38ifbieq2d 4553 . . . . . . 7 (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
4039adantl 482 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
41 metakunt6.2 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℕ)
4241nnred 12223 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
4342adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℝ)
44 metakunt6.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
4544nnred 12223 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℝ)
47 metakunt6.3 . . . . . . . . . . . . 13 (𝜑𝐼𝑀)
4847adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝐼) → 𝐼𝑀)
4916, 43, 46, 17, 48ltletrd 11370 . . . . . . . . . . 11 ((𝜑𝑋 < 𝐼) → 𝑋 < 𝑀)
5016, 49ltned 11346 . . . . . . . . . 10 ((𝜑𝑋 < 𝐼) → 𝑋𝑀)
5150neneqd 2945 . . . . . . . . 9 ((𝜑𝑋 < 𝐼) → ¬ 𝑋 = 𝑀)
52 iffalse 4536 . . . . . . . . 9 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)))
54 iftrue 4533 . . . . . . . . 9 (𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5554adantl 482 . . . . . . . 8 ((𝜑𝑋 < 𝐼) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = 𝑋)
5653, 55eqtrd 2772 . . . . . . 7 ((𝜑𝑋 < 𝐼) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5756adantr 481 . . . . . 6 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))) = 𝑋)
5840, 57eqtrd 2772 . . . . 5 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = 𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
5958ex 413 . . . 4 ((𝜑𝑋 < 𝐼) → (𝑦 = 𝑋 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6033, 59sylbird 259 . . 3 ((𝜑𝑋 < 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
6160imp 407 . 2 (((𝜑𝑋 < 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
6244adantr 481 . . . 4 ((𝜑𝑋 < 𝐼) → 𝑀 ∈ ℕ)
6341adantr 481 . . . 4 ((𝜑𝑋 < 𝐼) → 𝐼 ∈ ℕ)
6462, 63, 48, 3metakunt1 40973 . . 3 ((𝜑𝑋 < 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
6564, 28ffvelcdmd 7084 . 2 ((𝜑𝑋 < 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
662, 61, 65, 28fvmptd 7002 1 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  ifcif 4527   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440  cn 12208  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  metakunt9  40981
  Copyright terms: Public domain W3C validator