Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt5 | Structured version Visualization version GIF version |
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
Ref | Expression |
---|---|
metakunt5.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt5.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt5.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt5.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt5.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt5.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt5 | ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt5.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
3 | fveq2 6804 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐴‘𝑋) = (𝐴‘𝐼)) | |
4 | 3 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = (𝐴‘𝐼)) |
5 | metakunt5.4 | . . . . . . . . 9 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
7 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
8 | 7 | iftrued 4473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
9 | 1zzd 12397 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | metakunt5.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12471 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | metakunt5.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
13 | 12 | nnzd 12471 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
14 | 12 | nnge1d 12067 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
15 | metakunt5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
16 | 9, 11, 13, 14, 15 | elfzd 13293 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
17 | 6, 8, 16, 10 | fvmptd 6914 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐼) = 𝑀) |
18 | 17 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝐼) = 𝑀) |
19 | 4, 18 | eqtrd 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = 𝑀) |
20 | 19 | eqeq2d 2747 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) ↔ 𝑦 = 𝑀)) |
21 | iftrue 4471 | . . . . . . 7 ⊢ (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) | |
22 | 21 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
23 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → 𝑋 = 𝐼) | |
24 | 22, 23 | eqtr4d 2779 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
25 | 24 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
26 | 20, 25 | sylbid 239 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
27 | 26 | imp 408 | . 2 ⊢ (((𝜑 ∧ 𝑋 = 𝐼) ∧ 𝑦 = (𝐴‘𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
28 | 10, 12, 15, 5 | metakunt1 40167 | . . . 4 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
29 | 28 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀)) |
30 | metakunt5.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
31 | 30 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀)) |
32 | 29, 31 | ffvelcdmd 6994 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) ∈ (1...𝑀)) |
33 | 2, 27, 32, 31 | fvmptd 6914 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ifcif 4465 class class class wbr 5081 ↦ cmpt 5164 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 1c1 10918 + caddc 10920 < clt 11055 ≤ cle 11056 − cmin 11251 ℕcn 12019 ...cfz 13285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 |
This theorem is referenced by: metakunt9 40175 |
Copyright terms: Public domain | W3C validator |