| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt5 | Structured version Visualization version GIF version | ||
| Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
| Ref | Expression |
|---|---|
| metakunt5.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| metakunt5.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| metakunt5.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
| metakunt5.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
| metakunt5.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
| metakunt5.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
| Ref | Expression |
|---|---|
| metakunt5 | ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metakunt5.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
| 3 | fveq2 6876 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐴‘𝑋) = (𝐴‘𝐼)) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = (𝐴‘𝐼)) |
| 5 | metakunt5.4 | . . . . . . . . 9 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
| 7 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
| 8 | 7 | iftrued 4508 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
| 9 | 1zzd 12623 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 10 | metakunt5.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 11 | 10 | nnzd 12615 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 12 | metakunt5.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
| 13 | 12 | nnzd 12615 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 14 | 12 | nnge1d 12288 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
| 15 | metakunt5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
| 16 | 9, 11, 13, 14, 15 | elfzd 13532 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
| 17 | 6, 8, 16, 10 | fvmptd 6993 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐼) = 𝑀) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝐼) = 𝑀) |
| 19 | 4, 18 | eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = 𝑀) |
| 20 | 19 | eqeq2d 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) ↔ 𝑦 = 𝑀)) |
| 21 | iftrue 4506 | . . . . . . 7 ⊢ (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) | |
| 22 | 21 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
| 23 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → 𝑋 = 𝐼) | |
| 24 | 22, 23 | eqtr4d 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
| 25 | 24 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
| 26 | 20, 25 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
| 27 | 26 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑋 = 𝐼) ∧ 𝑦 = (𝐴‘𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
| 28 | 10, 12, 15, 5 | metakunt1 42218 | . . . 4 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀)) |
| 30 | metakunt5.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀)) |
| 32 | 29, 31 | ffvelcdmd 7075 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) ∈ (1...𝑀)) |
| 33 | 2, 27, 32, 31 | fvmptd 6993 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 ℕcn 12240 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: metakunt9 42226 |
| Copyright terms: Public domain | W3C validator |