Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt5 | Structured version Visualization version GIF version |
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
Ref | Expression |
---|---|
metakunt5.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt5.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt5.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt5.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt5.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt5.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt5 | ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt5.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
3 | fveq2 6809 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐴‘𝑋) = (𝐴‘𝐼)) | |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = (𝐴‘𝐼)) |
5 | metakunt5.4 | . . . . . . . . 9 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
7 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
8 | 7 | iftrued 4477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
9 | 1zzd 12421 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | metakunt5.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12495 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | metakunt5.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
13 | 12 | nnzd 12495 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
14 | 12 | nnge1d 12091 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
15 | metakunt5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
16 | 9, 11, 13, 14, 15 | elfzd 13317 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
17 | 6, 8, 16, 10 | fvmptd 6919 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐼) = 𝑀) |
18 | 17 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝐼) = 𝑀) |
19 | 4, 18 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = 𝑀) |
20 | 19 | eqeq2d 2748 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) ↔ 𝑦 = 𝑀)) |
21 | iftrue 4475 | . . . . . . 7 ⊢ (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) | |
22 | 21 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
23 | simp2 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → 𝑋 = 𝐼) | |
24 | 22, 23 | eqtr4d 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
25 | 24 | 3expia 1120 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
26 | 20, 25 | sylbid 239 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
27 | 26 | imp 407 | . 2 ⊢ (((𝜑 ∧ 𝑋 = 𝐼) ∧ 𝑦 = (𝐴‘𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
28 | 10, 12, 15, 5 | metakunt1 40340 | . . . 4 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
29 | 28 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀)) |
30 | metakunt5.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
31 | 30 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀)) |
32 | 29, 31 | ffvelcdmd 6999 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) ∈ (1...𝑀)) |
33 | 2, 27, 32, 31 | fvmptd 6919 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ifcif 4469 class class class wbr 5085 ↦ cmpt 5168 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 1c1 10942 + caddc 10944 < clt 11079 ≤ cle 11080 − cmin 11275 ℕcn 12043 ...cfz 13309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 |
This theorem is referenced by: metakunt9 40348 |
Copyright terms: Public domain | W3C validator |