Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt5 Structured version   Visualization version   GIF version

Theorem metakunt5 41717
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt5.1 (𝜑𝑀 ∈ ℕ)
metakunt5.2 (𝜑𝐼 ∈ ℕ)
metakunt5.3 (𝜑𝐼𝑀)
metakunt5.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt5.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt5.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt5 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)   𝑋(𝑥)

Proof of Theorem metakunt5
StepHypRef Expression
1 metakunt5.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 fveq2 6892 . . . . . . 7 (𝑋 = 𝐼 → (𝐴𝑋) = (𝐴𝐼))
43adantl 480 . . . . . 6 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) = (𝐴𝐼))
5 metakunt5.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
65a1i 11 . . . . . . . 8 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
7 simpr 483 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
87iftrued 4532 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
9 1zzd 12623 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
10 metakunt5.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1110nnzd 12615 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
12 metakunt5.2 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
1312nnzd 12615 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
1412nnge1d 12290 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐼)
15 metakunt5.3 . . . . . . . . 9 (𝜑𝐼𝑀)
169, 11, 13, 14, 15elfzd 13524 . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑀))
176, 8, 16, 10fvmptd 7007 . . . . . . 7 (𝜑 → (𝐴𝐼) = 𝑀)
1817adantr 479 . . . . . 6 ((𝜑𝑋 = 𝐼) → (𝐴𝐼) = 𝑀)
194, 18eqtrd 2765 . . . . 5 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) = 𝑀)
2019eqeq2d 2736 . . . 4 ((𝜑𝑋 = 𝐼) → (𝑦 = (𝐴𝑋) ↔ 𝑦 = 𝑀))
21 iftrue 4530 . . . . . . 7 (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
22213ad2ant3 1132 . . . . . 6 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
23 simp2 1134 . . . . . 6 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → 𝑋 = 𝐼)
2422, 23eqtr4d 2768 . . . . 5 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
25243expia 1118 . . . 4 ((𝜑𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
2620, 25sylbid 239 . . 3 ((𝜑𝑋 = 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
2726imp 405 . 2 (((𝜑𝑋 = 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
2810, 12, 15, 5metakunt1 41713 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
2928adantr 479 . . 3 ((𝜑𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
30 metakunt5.6 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
3130adantr 479 . . 3 ((𝜑𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀))
3229, 31ffvelcdmd 7090 . 2 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
332, 27, 32, 31fvmptd 7007 1 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  ifcif 4524   class class class wbr 5143  cmpt 5226  wf 6539  cfv 6543  (class class class)co 7416  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474  cn 12242  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517
This theorem is referenced by:  metakunt9  41721
  Copyright terms: Public domain W3C validator