Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt5 Structured version   Visualization version   GIF version

Theorem metakunt5 41550
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt5.1 (𝜑𝑀 ∈ ℕ)
metakunt5.2 (𝜑𝐼 ∈ ℕ)
metakunt5.3 (𝜑𝐼𝑀)
metakunt5.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt5.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt5.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt5 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)   𝑋(𝑥)

Proof of Theorem metakunt5
StepHypRef Expression
1 metakunt5.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 fveq2 6885 . . . . . . 7 (𝑋 = 𝐼 → (𝐴𝑋) = (𝐴𝐼))
43adantl 481 . . . . . 6 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) = (𝐴𝐼))
5 metakunt5.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
65a1i 11 . . . . . . . 8 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
7 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
87iftrued 4531 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀)
9 1zzd 12597 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
10 metakunt5.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1110nnzd 12589 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
12 metakunt5.2 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
1312nnzd 12589 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
1412nnge1d 12264 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐼)
15 metakunt5.3 . . . . . . . . 9 (𝜑𝐼𝑀)
169, 11, 13, 14, 15elfzd 13498 . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑀))
176, 8, 16, 10fvmptd 6999 . . . . . . 7 (𝜑 → (𝐴𝐼) = 𝑀)
1817adantr 480 . . . . . 6 ((𝜑𝑋 = 𝐼) → (𝐴𝐼) = 𝑀)
194, 18eqtrd 2766 . . . . 5 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) = 𝑀)
2019eqeq2d 2737 . . . 4 ((𝜑𝑋 = 𝐼) → (𝑦 = (𝐴𝑋) ↔ 𝑦 = 𝑀))
21 iftrue 4529 . . . . . . 7 (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
22213ad2ant3 1132 . . . . . 6 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
23 simp2 1134 . . . . . 6 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → 𝑋 = 𝐼)
2422, 23eqtr4d 2769 . . . . 5 ((𝜑𝑋 = 𝐼𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
25243expia 1118 . . . 4 ((𝜑𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
2620, 25sylbid 239 . . 3 ((𝜑𝑋 = 𝐼) → (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋))
2726imp 406 . 2 (((𝜑𝑋 = 𝐼) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
2810, 12, 15, 5metakunt1 41546 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
2928adantr 480 . . 3 ((𝜑𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀))
30 metakunt5.6 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
3130adantr 480 . . 3 ((𝜑𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀))
3229, 31ffvelcdmd 7081 . 2 ((𝜑𝑋 = 𝐼) → (𝐴𝑋) ∈ (1...𝑀))
332, 27, 32, 31fvmptd 6999 1 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  ifcif 4523   class class class wbr 5141  cmpt 5224  wf 6533  cfv 6537  (class class class)co 7405  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cn 12216  ...cfz 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491
This theorem is referenced by:  metakunt9  41554
  Copyright terms: Public domain W3C validator