![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt5 | Structured version Visualization version GIF version |
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
Ref | Expression |
---|---|
metakunt5.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt5.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt5.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt5.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt5.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt5.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt5 | ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt5.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
3 | fveq2 6892 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐴‘𝑋) = (𝐴‘𝐼)) | |
4 | 3 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = (𝐴‘𝐼)) |
5 | metakunt5.4 | . . . . . . . . 9 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
7 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
8 | 7 | iftrued 4533 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
9 | 1zzd 12638 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | metakunt5.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12630 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | metakunt5.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
13 | 12 | nnzd 12630 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
14 | 12 | nnge1d 12305 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
15 | metakunt5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
16 | 9, 11, 13, 14, 15 | elfzd 13539 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
17 | 6, 8, 16, 10 | fvmptd 7007 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐼) = 𝑀) |
18 | 17 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝐼) = 𝑀) |
19 | 4, 18 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = 𝑀) |
20 | 19 | eqeq2d 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) ↔ 𝑦 = 𝑀)) |
21 | iftrue 4531 | . . . . . . 7 ⊢ (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) | |
22 | 21 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
23 | simp2 1134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → 𝑋 = 𝐼) | |
24 | 22, 23 | eqtr4d 2769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
25 | 24 | 3expia 1118 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
26 | 20, 25 | sylbid 239 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
27 | 26 | imp 405 | . 2 ⊢ (((𝜑 ∧ 𝑋 = 𝐼) ∧ 𝑦 = (𝐴‘𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
28 | 10, 12, 15, 5 | metakunt1 41912 | . . . 4 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
29 | 28 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀)) |
30 | metakunt5.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
31 | 30 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀)) |
32 | 29, 31 | ffvelcdmd 7090 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) ∈ (1...𝑀)) |
33 | 2, 27, 32, 31 | fvmptd 7007 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ifcif 4525 class class class wbr 5145 ↦ cmpt 5228 ⟶wf 6541 ‘cfv 6545 (class class class)co 7415 1c1 11149 + caddc 11151 < clt 11288 ≤ cle 11289 − cmin 11484 ℕcn 12257 ...cfz 13531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-n0 12518 df-z 12604 df-uz 12868 df-fz 13532 |
This theorem is referenced by: metakunt9 41920 |
Copyright terms: Public domain | W3C validator |