![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt5 | Structured version Visualization version GIF version |
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
Ref | Expression |
---|---|
metakunt5.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt5.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt5.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt5.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt5.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt5.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt5 | ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt5.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))) |
3 | fveq2 6892 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐴‘𝑋) = (𝐴‘𝐼)) | |
4 | 3 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = (𝐴‘𝐼)) |
5 | metakunt5.4 | . . . . . . . . 9 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))) |
7 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | |
8 | 7 | iftrued 4537 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐼) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑀) |
9 | 1zzd 12593 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | metakunt5.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12585 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | metakunt5.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
13 | 12 | nnzd 12585 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
14 | 12 | nnge1d 12260 | . . . . . . . . 9 ⊢ (𝜑 → 1 ≤ 𝐼) |
15 | metakunt5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
16 | 9, 11, 13, 14, 15 | elfzd 13492 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
17 | 6, 8, 16, 10 | fvmptd 7006 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐼) = 𝑀) |
18 | 17 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝐼) = 𝑀) |
19 | 4, 18 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) = 𝑀) |
20 | 19 | eqeq2d 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) ↔ 𝑦 = 𝑀)) |
21 | iftrue 4535 | . . . . . . 7 ⊢ (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) | |
22 | 21 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼) |
23 | simp2 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → 𝑋 = 𝐼) | |
24 | 22, 23 | eqtr4d 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝐼 ∧ 𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
25 | 24 | 3expia 1122 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
26 | 20, 25 | sylbid 239 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝑦 = (𝐴‘𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)) |
27 | 26 | imp 408 | . 2 ⊢ (((𝜑 ∧ 𝑋 = 𝐼) ∧ 𝑦 = (𝐴‘𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋) |
28 | 10, 12, 15, 5 | metakunt1 40985 | . . . 4 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
29 | 28 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝐴:(1...𝑀)⟶(1...𝑀)) |
30 | metakunt5.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
31 | 30 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → 𝑋 ∈ (1...𝑀)) |
32 | 29, 31 | ffvelcdmd 7088 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐴‘𝑋) ∈ (1...𝑀)) |
33 | 2, 27, 32, 31 | fvmptd 7006 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ifcif 4529 class class class wbr 5149 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 1c1 11111 + caddc 11113 < clt 11248 ≤ cle 11249 − cmin 11444 ℕcn 12212 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: metakunt9 40993 |
Copyright terms: Public domain | W3C validator |