Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt8 Structured version   Visualization version   GIF version

Theorem metakunt8 39854
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt8.1 (𝜑𝑀 ∈ ℕ)
metakunt8.2 (𝜑𝐼 ∈ ℕ)
metakunt8.3 (𝜑𝐼𝑀)
metakunt8.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt8.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt8.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt8 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt8
StepHypRef Expression
1 metakunt8.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝐼 < 𝑋) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 eqeq1 2741 . . . . 5 (𝑦 = (𝐴𝑋) → (𝑦 = 𝑀 ↔ (𝐴𝑋) = 𝑀))
4 breq1 5056 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 < 𝐼 ↔ (𝐴𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑦 = (𝐴𝑋) → 𝑦 = (𝐴𝑋))
6 oveq1 7220 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 + 1) = ((𝐴𝑋) + 1))
74, 5, 6ifbieq12d 4467 . . . . 5 (𝑦 = (𝐴𝑋) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
83, 7ifbieq2d 4465 . . . 4 (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
98adantl 485 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
10 metakunt8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
11 metakunt8.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
12 metakunt8.3 . . . . . . . . 9 (𝜑𝐼𝑀)
13 metakunt8.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
14 metakunt8.6 . . . . . . . . 9 (𝜑𝑋 ∈ (1...𝑀))
1510, 11, 12, 13, 1, 14metakunt7 39853 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
1615simp2d 1145 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
17 iffalse 4448 . . . . . . 7 (¬ (𝐴𝑋) = 𝑀 → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1816, 17syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1915simp3d 1146 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
20 iffalse 4448 . . . . . . 7 (¬ (𝐴𝑋) < 𝐼 → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2119, 20syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2218, 21eqtrd 2777 . . . . 5 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = ((𝐴𝑋) + 1))
2315simp1d 1144 . . . . . . 7 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
2423oveq1d 7228 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = ((𝑋 − 1) + 1))
25 elfznn 13141 . . . . . . . . . 10 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2614, 25syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
2726nncnd 11846 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
28 1cnd 10828 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28npcand 11193 . . . . . . 7 (𝜑 → ((𝑋 − 1) + 1) = 𝑋)
3029adantr 484 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝑋 − 1) + 1) = 𝑋)
3124, 30eqtrd 2777 . . . . 5 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = 𝑋)
3222, 31eqtrd 2777 . . . 4 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
3332adantr 484 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
349, 33eqtrd 2777 . 2 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
3510, 11, 12, 13metakunt1 39847 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
3635adantr 484 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴:(1...𝑀)⟶(1...𝑀))
3714adantr 484 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3836, 37ffvelrnd 6905 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ (1...𝑀))
392, 34, 38, 37fvmptd 6825 1 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  ifcif 4439   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096
This theorem is referenced by:  metakunt9  39855
  Copyright terms: Public domain W3C validator