Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt8 Structured version   Visualization version   GIF version

Theorem metakunt8 40584
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt8.1 (𝜑𝑀 ∈ ℕ)
metakunt8.2 (𝜑𝐼 ∈ ℕ)
metakunt8.3 (𝜑𝐼𝑀)
metakunt8.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt8.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt8.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt8 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt8
StepHypRef Expression
1 metakunt8.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝐼 < 𝑋) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 eqeq1 2740 . . . . 5 (𝑦 = (𝐴𝑋) → (𝑦 = 𝑀 ↔ (𝐴𝑋) = 𝑀))
4 breq1 5108 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 < 𝐼 ↔ (𝐴𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑦 = (𝐴𝑋) → 𝑦 = (𝐴𝑋))
6 oveq1 7364 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 + 1) = ((𝐴𝑋) + 1))
74, 5, 6ifbieq12d 4514 . . . . 5 (𝑦 = (𝐴𝑋) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
83, 7ifbieq2d 4512 . . . 4 (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
98adantl 482 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
10 metakunt8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
11 metakunt8.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
12 metakunt8.3 . . . . . . . . 9 (𝜑𝐼𝑀)
13 metakunt8.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
14 metakunt8.6 . . . . . . . . 9 (𝜑𝑋 ∈ (1...𝑀))
1510, 11, 12, 13, 1, 14metakunt7 40583 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
1615simp2d 1143 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
17 iffalse 4495 . . . . . . 7 (¬ (𝐴𝑋) = 𝑀 → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1816, 17syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1915simp3d 1144 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
20 iffalse 4495 . . . . . . 7 (¬ (𝐴𝑋) < 𝐼 → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2119, 20syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2218, 21eqtrd 2776 . . . . 5 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = ((𝐴𝑋) + 1))
2315simp1d 1142 . . . . . . 7 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
2423oveq1d 7372 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = ((𝑋 − 1) + 1))
25 elfznn 13470 . . . . . . . . . 10 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2614, 25syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
2726nncnd 12169 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
28 1cnd 11150 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28npcand 11516 . . . . . . 7 (𝜑 → ((𝑋 − 1) + 1) = 𝑋)
3029adantr 481 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝑋 − 1) + 1) = 𝑋)
3124, 30eqtrd 2776 . . . . 5 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = 𝑋)
3222, 31eqtrd 2776 . . . 4 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
3332adantr 481 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
349, 33eqtrd 2776 . 2 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
3510, 11, 12, 13metakunt1 40577 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
3635adantr 481 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴:(1...𝑀)⟶(1...𝑀))
3714adantr 481 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3836, 37ffvelcdmd 7036 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ (1...𝑀))
392, 34, 38, 37fvmptd 6955 1 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  metakunt9  40585
  Copyright terms: Public domain W3C validator