Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt8 Structured version   Visualization version   GIF version

Theorem metakunt8 40987
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt8.1 (𝜑𝑀 ∈ ℕ)
metakunt8.2 (𝜑𝐼 ∈ ℕ)
metakunt8.3 (𝜑𝐼𝑀)
metakunt8.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt8.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt8.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt8 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt8
StepHypRef Expression
1 metakunt8.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝐼 < 𝑋) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 eqeq1 2736 . . . . 5 (𝑦 = (𝐴𝑋) → (𝑦 = 𝑀 ↔ (𝐴𝑋) = 𝑀))
4 breq1 5151 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 < 𝐼 ↔ (𝐴𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑦 = (𝐴𝑋) → 𝑦 = (𝐴𝑋))
6 oveq1 7415 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 + 1) = ((𝐴𝑋) + 1))
74, 5, 6ifbieq12d 4556 . . . . 5 (𝑦 = (𝐴𝑋) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
83, 7ifbieq2d 4554 . . . 4 (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
98adantl 482 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
10 metakunt8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
11 metakunt8.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
12 metakunt8.3 . . . . . . . . 9 (𝜑𝐼𝑀)
13 metakunt8.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
14 metakunt8.6 . . . . . . . . 9 (𝜑𝑋 ∈ (1...𝑀))
1510, 11, 12, 13, 1, 14metakunt7 40986 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
1615simp2d 1143 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
17 iffalse 4537 . . . . . . 7 (¬ (𝐴𝑋) = 𝑀 → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1816, 17syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1915simp3d 1144 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
20 iffalse 4537 . . . . . . 7 (¬ (𝐴𝑋) < 𝐼 → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2119, 20syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2218, 21eqtrd 2772 . . . . 5 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = ((𝐴𝑋) + 1))
2315simp1d 1142 . . . . . . 7 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
2423oveq1d 7423 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = ((𝑋 − 1) + 1))
25 elfznn 13529 . . . . . . . . . 10 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2614, 25syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
2726nncnd 12227 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
28 1cnd 11208 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28npcand 11574 . . . . . . 7 (𝜑 → ((𝑋 − 1) + 1) = 𝑋)
3029adantr 481 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝑋 − 1) + 1) = 𝑋)
3124, 30eqtrd 2772 . . . . 5 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = 𝑋)
3222, 31eqtrd 2772 . . . 4 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
3332adantr 481 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
349, 33eqtrd 2772 . 2 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
3510, 11, 12, 13metakunt1 40980 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
3635adantr 481 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴:(1...𝑀)⟶(1...𝑀))
3714adantr 481 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3836, 37ffvelcdmd 7087 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ (1...𝑀))
392, 34, 38, 37fvmptd 7005 1 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4528   class class class wbr 5148  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7408  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cmin 11443  cn 12211  ...cfz 13483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484
This theorem is referenced by:  metakunt9  40988
  Copyright terms: Public domain W3C validator