Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt8 Structured version   Visualization version   GIF version

Theorem metakunt8 42194
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt8.1 (𝜑𝑀 ∈ ℕ)
metakunt8.2 (𝜑𝐼 ∈ ℕ)
metakunt8.3 (𝜑𝐼𝑀)
metakunt8.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt8.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt8.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt8 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt8
StepHypRef Expression
1 metakunt8.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
21a1i 11 . 2 ((𝜑𝐼 < 𝑋) → 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
3 eqeq1 2739 . . . . 5 (𝑦 = (𝐴𝑋) → (𝑦 = 𝑀 ↔ (𝐴𝑋) = 𝑀))
4 breq1 5151 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 < 𝐼 ↔ (𝐴𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑦 = (𝐴𝑋) → 𝑦 = (𝐴𝑋))
6 oveq1 7438 . . . . . 6 (𝑦 = (𝐴𝑋) → (𝑦 + 1) = ((𝐴𝑋) + 1))
74, 5, 6ifbieq12d 4559 . . . . 5 (𝑦 = (𝐴𝑋) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
83, 7ifbieq2d 4557 . . . 4 (𝑦 = (𝐴𝑋) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
98adantl 481 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))))
10 metakunt8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
11 metakunt8.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
12 metakunt8.3 . . . . . . . . 9 (𝜑𝐼𝑀)
13 metakunt8.4 . . . . . . . . 9 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
14 metakunt8.6 . . . . . . . . 9 (𝜑𝑋 ∈ (1...𝑀))
1510, 11, 12, 13, 1, 14metakunt7 42193 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
1615simp2d 1142 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
17 iffalse 4540 . . . . . . 7 (¬ (𝐴𝑋) = 𝑀 → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1816, 17syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)))
1915simp3d 1143 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
20 iffalse 4540 . . . . . . 7 (¬ (𝐴𝑋) < 𝐼 → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2119, 20syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1)) = ((𝐴𝑋) + 1))
2218, 21eqtrd 2775 . . . . 5 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = ((𝐴𝑋) + 1))
2315simp1d 1141 . . . . . . 7 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
2423oveq1d 7446 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = ((𝑋 − 1) + 1))
25 elfznn 13590 . . . . . . . . . 10 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2614, 25syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
2726nncnd 12280 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
28 1cnd 11254 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28npcand 11622 . . . . . . 7 (𝜑 → ((𝑋 − 1) + 1) = 𝑋)
3029adantr 480 . . . . . 6 ((𝜑𝐼 < 𝑋) → ((𝑋 − 1) + 1) = 𝑋)
3124, 30eqtrd 2775 . . . . 5 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) + 1) = 𝑋)
3222, 31eqtrd 2775 . . . 4 ((𝜑𝐼 < 𝑋) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
3332adantr 480 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if((𝐴𝑋) = 𝑀, 𝐼, if((𝐴𝑋) < 𝐼, (𝐴𝑋), ((𝐴𝑋) + 1))) = 𝑋)
349, 33eqtrd 2775 . 2 (((𝜑𝐼 < 𝑋) ∧ 𝑦 = (𝐴𝑋)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝑋)
3510, 11, 12, 13metakunt1 42187 . . . 4 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
3635adantr 480 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴:(1...𝑀)⟶(1...𝑀))
3714adantr 480 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3836, 37ffvelcdmd 7105 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ (1...𝑀))
392, 34, 38, 37fvmptd 7023 1 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  ifcif 4531   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  metakunt9  42195
  Copyright terms: Public domain W3C validator