Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt10 Structured version   Visualization version   GIF version

Theorem metakunt10 42171
Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt10.1 (𝜑𝑀 ∈ ℕ)
metakunt10.2 (𝜑𝐼 ∈ ℕ)
metakunt10.3 (𝜑𝐼𝑀)
metakunt10.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt10.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt10.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt10 ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)   𝐼(𝑥)   𝑋(𝑦)

Proof of Theorem metakunt10
StepHypRef Expression
1 metakunt10.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . 2 ((𝜑𝑋 = 𝑀) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2744 . . . . 5 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
4 breq1 5169 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
6 oveq1 7455 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
74, 5, 6ifbieq12d 4576 . . . . 5 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
83, 7ifbieq2d 4574 . . . 4 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
98adantl 481 . . 3 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
10 fveq2 6920 . . . . . . . 8 (𝑋 = 𝑀 → (𝐶𝑋) = (𝐶𝑀))
1110adantl 481 . . . . . . 7 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) = (𝐶𝑀))
12 metakunt10.5 . . . . . . . . . 10 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1312a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
14 iftrue 4554 . . . . . . . . . 10 (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
16 1zzd 12674 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
17 metakunt10.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
1817nnzd 12666 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1917nnge1d 12341 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
2017nnred 12308 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2120leidd 11856 . . . . . . . . . 10 (𝜑𝑀𝑀)
2216, 18, 18, 19, 21elfzd 13575 . . . . . . . . 9 (𝜑𝑀 ∈ (1...𝑀))
23 metakunt10.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
2413, 15, 22, 23fvmptd 7036 . . . . . . . 8 (𝜑 → (𝐶𝑀) = 𝐼)
2524adantr 480 . . . . . . 7 ((𝜑𝑋 = 𝑀) → (𝐶𝑀) = 𝐼)
2611, 25eqtrd 2780 . . . . . 6 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) = 𝐼)
27 iftrue 4554 . . . . . 6 ((𝐶𝑋) = 𝐼 → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑀)
2826, 27syl 17 . . . . 5 ((𝜑𝑋 = 𝑀) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑀)
29 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑀) → 𝑋 = 𝑀)
3029eqcomd 2746 . . . . 5 ((𝜑𝑋 = 𝑀) → 𝑀 = 𝑋)
3128, 30eqtrd 2780 . . . 4 ((𝜑𝑋 = 𝑀) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
3231adantr 480 . . 3 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
339, 32eqtrd 2780 . 2 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
34 metakunt10.3 . . . . 5 (𝜑𝐼𝑀)
3517, 23, 34, 12metakunt2 42163 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
3635adantr 480 . . 3 ((𝜑𝑋 = 𝑀) → 𝐶:(1...𝑀)⟶(1...𝑀))
37 metakunt10.6 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
3837adantr 480 . . 3 ((𝜑𝑋 = 𝑀) → 𝑋 ∈ (1...𝑀))
3936, 38ffvelcdmd 7119 . 2 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) ∈ (1...𝑀))
402, 33, 39, 38fvmptd 7036 1 ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  metakunt13  42174
  Copyright terms: Public domain W3C validator