Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt10 Structured version   Visualization version   GIF version

Theorem metakunt10 39808
Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt10.1 (𝜑𝑀 ∈ ℕ)
metakunt10.2 (𝜑𝐼 ∈ ℕ)
metakunt10.3 (𝜑𝐼𝑀)
metakunt10.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt10.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt10.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt10 ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐶   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦)   𝐼(𝑥)   𝑋(𝑦)

Proof of Theorem metakunt10
StepHypRef Expression
1 metakunt10.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . 2 ((𝜑𝑋 = 𝑀) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2738 . . . . 5 (𝑥 = (𝐶𝑋) → (𝑥 = 𝐼 ↔ (𝐶𝑋) = 𝐼))
4 breq1 5046 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 < 𝐼 ↔ (𝐶𝑋) < 𝐼))
5 id 22 . . . . . 6 (𝑥 = (𝐶𝑋) → 𝑥 = (𝐶𝑋))
6 oveq1 7209 . . . . . 6 (𝑥 = (𝐶𝑋) → (𝑥 − 1) = ((𝐶𝑋) − 1))
74, 5, 6ifbieq12d 4457 . . . . 5 (𝑥 = (𝐶𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1)))
83, 7ifbieq2d 4455 . . . 4 (𝑥 = (𝐶𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
98adantl 485 . . 3 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))))
10 fveq2 6706 . . . . . . . 8 (𝑋 = 𝑀 → (𝐶𝑋) = (𝐶𝑀))
1110adantl 485 . . . . . . 7 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) = (𝐶𝑀))
12 metakunt10.5 . . . . . . . . . 10 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1312a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
14 iftrue 4435 . . . . . . . . . 10 (𝑦 = 𝑀 → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
1514adantl 485 . . . . . . . . 9 ((𝜑𝑦 = 𝑀) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = 𝐼)
16 1zzd 12191 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
17 metakunt10.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
1817nnzd 12264 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1917nnge1d 11861 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
2017nnred 11828 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2120leidd 11381 . . . . . . . . . 10 (𝜑𝑀𝑀)
2216, 18, 18, 19, 21elfzd 13086 . . . . . . . . 9 (𝜑𝑀 ∈ (1...𝑀))
23 metakunt10.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
2413, 15, 22, 23fvmptd 6814 . . . . . . . 8 (𝜑 → (𝐶𝑀) = 𝐼)
2524adantr 484 . . . . . . 7 ((𝜑𝑋 = 𝑀) → (𝐶𝑀) = 𝐼)
2611, 25eqtrd 2774 . . . . . 6 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) = 𝐼)
27 iftrue 4435 . . . . . 6 ((𝐶𝑋) = 𝐼 → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑀)
2826, 27syl 17 . . . . 5 ((𝜑𝑋 = 𝑀) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑀)
29 simpr 488 . . . . . 6 ((𝜑𝑋 = 𝑀) → 𝑋 = 𝑀)
3029eqcomd 2740 . . . . 5 ((𝜑𝑋 = 𝑀) → 𝑀 = 𝑋)
3128, 30eqtrd 2774 . . . 4 ((𝜑𝑋 = 𝑀) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
3231adantr 484 . . 3 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if((𝐶𝑋) = 𝐼, 𝑀, if((𝐶𝑋) < 𝐼, (𝐶𝑋), ((𝐶𝑋) − 1))) = 𝑋)
339, 32eqtrd 2774 . 2 (((𝜑𝑋 = 𝑀) ∧ 𝑥 = (𝐶𝑋)) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
34 metakunt10.3 . . . . 5 (𝜑𝐼𝑀)
3517, 23, 34, 12metakunt2 39800 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
3635adantr 484 . . 3 ((𝜑𝑋 = 𝑀) → 𝐶:(1...𝑀)⟶(1...𝑀))
37 metakunt10.6 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
3837adantr 484 . . 3 ((𝜑𝑋 = 𝑀) → 𝑋 ∈ (1...𝑀))
3936, 38ffvelrnd 6894 . 2 ((𝜑𝑋 = 𝑀) → (𝐶𝑋) ∈ (1...𝑀))
402, 33, 39, 38fvmptd 6814 1 ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  ifcif 4429   class class class wbr 5043  cmpt 5124  wf 6365  cfv 6369  (class class class)co 7202  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  ...cfz 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079
This theorem is referenced by:  metakunt13  39811
  Copyright terms: Public domain W3C validator