MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3i Structured version   Visualization version   GIF version

Theorem iscmet3i 23633
Description: Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3i.2 𝐽 = (MetOpen‘𝐷)
iscmet3i.3 𝐷 ∈ (Met‘𝑋)
iscmet3i.4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
iscmet3i 𝐷 ∈ (CMet‘𝑋)
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑓,𝑋

Proof of Theorem iscmet3i
StepHypRef Expression
1 nnuz 12101 . . . 4 ℕ = (ℤ‘1)
2 iscmet3i.2 . . . 4 𝐽 = (MetOpen‘𝐷)
3 1zzd 11832 . . . 4 (⊤ → 1 ∈ ℤ)
4 iscmet3i.3 . . . . 5 𝐷 ∈ (Met‘𝑋)
54a1i 11 . . . 4 (⊤ → 𝐷 ∈ (Met‘𝑋))
61, 2, 3, 5iscmet3 23614 . . 3 (⊤ → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
76mptru 1515 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
8 iscmet3i.4 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ dom (⇝𝑡𝐽))
98ex 405 . 2 (𝑓 ∈ (Cau‘𝐷) → (𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
107, 9mprgbir 3105 1 𝐷 ∈ (CMet‘𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wtru 1509  wcel 2051  wral 3090  dom cdm 5411  wf 6189  cfv 6193  1c1 10342  cn 11445  Metcmet 20248  MetOpencmopn 20252  𝑡clm 21553  Cauccau 23574  CMetccmet 23575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cc 9661  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-omul 7916  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-acn 9171  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ico 12566  df-fz 12715  df-fl 12983  df-seq 13191  df-exp 13251  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-clim 14712  df-rlim 14713  df-rest 16558  df-topgen 16579  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-top 21221  df-topon 21238  df-bases 21273  df-ntr 21347  df-nei 21425  df-lm 21556  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-cfil 23576  df-cau 23577  df-cmet 23578
This theorem is referenced by:  hhcms  28774  hhsscms  28850
  Copyright terms: Public domain W3C validator