MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02i Structured version   Visualization version   GIF version

Theorem mul02i 10629
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
mul02i (0 · 𝐴) = 0

Proof of Theorem mul02i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul02 10618 . 2 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
31, 2ax-mp 5 1 (0 · 𝐴) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  (class class class)co 6976  cc 10333  0cc0 10335   · cmul 10340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-ltxr 10479
This theorem is referenced by:  abs0  14506  odd2np1lem  15549  divalglem8  15611  11prm  16304  631prm  16316  1259lem1  16320  1259lem3  16322  1259lem4  16323  2503lem1  16326  2503lem2  16327  4001lem1  16330  4001lem2  16331  4001lem3  16332  4001prm  16334  pcoass  23331  sin2pi  24764  abscxpbnd  25035  log2ub  25229  dchrmulid2  25530  lgsdir2  25608  lgsdir  25610  ex-prmo  28016  siilem2  28406  nmophmi  29589  ccfldextdgrr  30692  hgt750lem2  31577  sqn5i  38609  sqdeccom12  38613  stoweidlem36  41758  fmtnofac1  43106  fmtno5faclem1  43115  fmtno5faclem2  43116  31prm  43134  2exp340mod341  43272  8exp8mod9  43275  nfermltl8rev  43281  line2ylem  44112
  Copyright terms: Public domain W3C validator