| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul02i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul02i | ⊢ (0 · 𝐴) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul02 11298 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 · 𝐴) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 0cc0 11013 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 |
| This theorem is referenced by: abs0 15194 odd2np1lem 16253 divalglem8 16313 11prm 17028 631prm 17040 1259lem1 17044 1259lem3 17046 1259lem4 17047 2503lem1 17050 2503lem2 17051 4001lem1 17054 4001lem2 17055 4001lem3 17056 4001prm 17058 pzriprnglem5 21424 pzriprnglem6 21425 pzriprng1ALT 21435 pcoass 24952 sin2pi 26412 abscxpbnd 26691 log2ub 26887 dchrmullid 27191 lgsdir2 27269 lgsdir 27271 ex-prmo 30441 siilem2 30834 nmophmi 32013 ccfldextdgrr 33706 hgt750lem2 34686 60gcd6e6 42118 3exp7 42167 3lexlogpow5ineq1 42168 3lexlogpow5ineq5 42174 aks4d1p1 42190 sqn5i 42404 sqdeccom12 42408 stoweidlem36 46159 lambert0 47012 fmtnofac1 47695 fmtno5faclem1 47704 fmtno5faclem2 47705 31prm 47722 2exp340mod341 47858 8exp8mod9 47861 nfermltl8rev 47867 line2ylem 48877 |
| Copyright terms: Public domain | W3C validator |