| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul02i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul02i | ⊢ (0 · 𝐴) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul02 11418 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 · 𝐴) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 0cc0 11134 · cmul 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 |
| This theorem is referenced by: abs0 15309 odd2np1lem 16364 divalglem8 16424 11prm 17139 631prm 17151 1259lem1 17155 1259lem3 17157 1259lem4 17158 2503lem1 17161 2503lem2 17162 4001lem1 17165 4001lem2 17166 4001lem3 17167 4001prm 17169 pzriprnglem5 21451 pzriprnglem6 21452 pzriprng1ALT 21462 pcoass 24980 sin2pi 26441 abscxpbnd 26720 log2ub 26916 dchrmullid 27220 lgsdir2 27298 lgsdir 27300 ex-prmo 30445 siilem2 30838 nmophmi 32017 ccfldextdgrr 33718 hgt750lem2 34689 60gcd6e6 42022 3exp7 42071 3lexlogpow5ineq1 42072 3lexlogpow5ineq5 42078 aks4d1p1 42094 sqn5i 42302 sqdeccom12 42306 stoweidlem36 46032 lambert0 46886 fmtnofac1 47551 fmtno5faclem1 47560 fmtno5faclem2 47561 31prm 47578 2exp340mod341 47714 8exp8mod9 47717 nfermltl8rev 47723 line2ylem 48698 |
| Copyright terms: Public domain | W3C validator |