Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul02i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul02i | ⊢ (0 · 𝐴) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul02 11153 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 · 𝐴) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 0cc0 10872 · cmul 10877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 |
This theorem is referenced by: abs0 14995 odd2np1lem 16047 divalglem8 16107 11prm 16814 631prm 16826 1259lem1 16830 1259lem3 16832 1259lem4 16833 2503lem1 16836 2503lem2 16837 4001lem1 16840 4001lem2 16841 4001lem3 16842 4001prm 16844 pcoass 24185 sin2pi 25630 abscxpbnd 25904 log2ub 26097 dchrmulid2 26398 lgsdir2 26476 lgsdir 26478 ex-prmo 28819 siilem2 29210 nmophmi 30389 ccfldextdgrr 31738 hgt750lem2 32628 60gcd6e6 40009 3exp7 40058 3lexlogpow5ineq1 40059 3lexlogpow5ineq5 40065 aks4d1p1 40081 sqn5i 40310 sqdeccom12 40314 stoweidlem36 43548 fmtnofac1 44991 fmtno5faclem1 45000 fmtno5faclem2 45001 31prm 45018 2exp340mod341 45154 8exp8mod9 45157 nfermltl8rev 45163 line2ylem 46066 |
Copyright terms: Public domain | W3C validator |