![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul02i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul02i | ⊢ (0 · 𝐴) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul02 10618 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 · 𝐴) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 (class class class)co 6976 ℂcc 10333 0cc0 10335 · cmul 10340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 |
This theorem is referenced by: abs0 14506 odd2np1lem 15549 divalglem8 15611 11prm 16304 631prm 16316 1259lem1 16320 1259lem3 16322 1259lem4 16323 2503lem1 16326 2503lem2 16327 4001lem1 16330 4001lem2 16331 4001lem3 16332 4001prm 16334 pcoass 23331 sin2pi 24764 abscxpbnd 25035 log2ub 25229 dchrmulid2 25530 lgsdir2 25608 lgsdir 25610 ex-prmo 28016 siilem2 28406 nmophmi 29589 ccfldextdgrr 30692 hgt750lem2 31577 sqn5i 38609 sqdeccom12 38613 stoweidlem36 41758 fmtnofac1 43106 fmtno5faclem1 43115 fmtno5faclem2 43116 31prm 43134 2exp340mod341 43272 8exp8mod9 43275 nfermltl8rev 43281 line2ylem 44112 |
Copyright terms: Public domain | W3C validator |