MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0modprm0 Structured version   Visualization version   GIF version

Theorem nnnn0modprm0 16774
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (0..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
Distinct variable groups:   ๐‘—,๐ผ   ๐‘—,๐‘   ๐‘ƒ,๐‘—

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 16644 . . . . . 6 (๐‘ƒ โˆˆ โ„™ โ†’ ๐‘ƒ โˆˆ โ„•)
21adantr 479 . . . . 5 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ๐‘ƒ โˆˆ โ„•)
3 fzo0sn0fzo1 13753 . . . . 5 (๐‘ƒ โˆˆ โ„• โ†’ (0..^๐‘ƒ) = ({0} โˆช (1..^๐‘ƒ)))
42, 3syl 17 . . . 4 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0..^๐‘ƒ) = ({0} โˆช (1..^๐‘ƒ)))
54eleq2d 2811 . . 3 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ (0..^๐‘ƒ) โ†” ๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ))))
6 elun 4146 . . . . 5 (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†” (๐ผ โˆˆ {0} โˆจ ๐ผ โˆˆ (1..^๐‘ƒ)))
7 elsni 4646 . . . . . . 7 (๐ผ โˆˆ {0} โ†’ ๐ผ = 0)
8 lbfzo0 13704 . . . . . . . . . . . 12 (0 โˆˆ (0..^๐‘ƒ) โ†” ๐‘ƒ โˆˆ โ„•)
91, 8sylibr 233 . . . . . . . . . . 11 (๐‘ƒ โˆˆ โ„™ โ†’ 0 โˆˆ (0..^๐‘ƒ))
10 elfzoelz 13664 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ (1..^๐‘ƒ) โ†’ ๐‘ โˆˆ โ„ค)
11 zcn 12593 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
12 mul02 11422 . . . . . . . . . . . . . . . . 17 (๐‘ โˆˆ โ„‚ โ†’ (0 ยท ๐‘) = 0)
1312oveq2d 7433 . . . . . . . . . . . . . . . 16 (๐‘ โˆˆ โ„‚ โ†’ (0 + (0 ยท ๐‘)) = (0 + 0))
14 00id 11419 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1513, 14eqtrdi 2781 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ โ„‚ โ†’ (0 + (0 ยท ๐‘)) = 0)
1610, 11, 153syl 18 . . . . . . . . . . . . . 14 (๐‘ โˆˆ (1..^๐‘ƒ) โ†’ (0 + (0 ยท ๐‘)) = 0)
1716adantl 480 . . . . . . . . . . . . 13 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0 + (0 ยท ๐‘)) = 0)
1817oveq1d 7432 . . . . . . . . . . . 12 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = (0 mod ๐‘ƒ))
19 nnrp 13017 . . . . . . . . . . . . . 14 (๐‘ƒ โˆˆ โ„• โ†’ ๐‘ƒ โˆˆ โ„+)
20 0mod 13899 . . . . . . . . . . . . . 14 (๐‘ƒ โˆˆ โ„+ โ†’ (0 mod ๐‘ƒ) = 0)
211, 19, 203syl 18 . . . . . . . . . . . . 13 (๐‘ƒ โˆˆ โ„™ โ†’ (0 mod ๐‘ƒ) = 0)
2221adantr 479 . . . . . . . . . . . 12 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0 mod ๐‘ƒ) = 0)
2318, 22eqtrd 2765 . . . . . . . . . . 11 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0)
24 oveq1 7424 . . . . . . . . . . . . . . 15 (๐‘— = 0 โ†’ (๐‘— ยท ๐‘) = (0 ยท ๐‘))
2524oveq2d 7433 . . . . . . . . . . . . . 14 (๐‘— = 0 โ†’ (0 + (๐‘— ยท ๐‘)) = (0 + (0 ยท ๐‘)))
2625oveq1d 7432 . . . . . . . . . . . . 13 (๐‘— = 0 โ†’ ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = ((0 + (0 ยท ๐‘)) mod ๐‘ƒ))
2726eqeq1d 2727 . . . . . . . . . . . 12 (๐‘— = 0 โ†’ (((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0))
2827rspcev 3607 . . . . . . . . . . 11 ((0 โˆˆ (0..^๐‘ƒ) โˆง ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
299, 23, 28syl2an2r 683 . . . . . . . . . 10 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
3029adantl 480 . . . . . . . . 9 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
31 oveq1 7424 . . . . . . . . . . . . 13 (๐ผ = 0 โ†’ (๐ผ + (๐‘— ยท ๐‘)) = (0 + (๐‘— ยท ๐‘)))
3231oveq1d 7432 . . . . . . . . . . . 12 (๐ผ = 0 โ†’ ((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ))
3332eqeq1d 2727 . . . . . . . . . . 11 (๐ผ = 0 โ†’ (((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3433adantr 479 . . . . . . . . . 10 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ (((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3534rexbidv 3169 . . . . . . . . 9 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ (โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3630, 35mpbird 256 . . . . . . . 8 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
3736ex 411 . . . . . . 7 (๐ผ = 0 โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
387, 37syl 17 . . . . . 6 (๐ผ โˆˆ {0} โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
39 simpl 481 . . . . . . . . 9 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ๐‘ƒ โˆˆ โ„™)
4039adantl 480 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐‘ƒ โˆˆ โ„™)
41 simprr 771 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐‘ โˆˆ (1..^๐‘ƒ))
42 simpl 481 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐ผ โˆˆ (1..^๐‘ƒ))
43 modprm0 16773 . . . . . . . 8 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
4440, 41, 42, 43syl3anc 1368 . . . . . . 7 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
4544ex 411 . . . . . 6 (๐ผ โˆˆ (1..^๐‘ƒ) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
4638, 45jaoi 855 . . . . 5 ((๐ผ โˆˆ {0} โˆจ ๐ผ โˆˆ (1..^๐‘ƒ)) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
476, 46sylbi 216 . . . 4 (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
4847com12 32 . . 3 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
495, 48sylbid 239 . 2 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ (0..^๐‘ƒ) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
50493impia 1114 1 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (0..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆจ wo 845   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3060   โˆช cun 3943  {csn 4629  (class class class)co 7417  โ„‚cc 11136  0cc0 11138  1c1 11139   + caddc 11141   ยท cmul 11143  โ„•cn 12242  โ„คcz 12588  โ„+crp 13006  ..^cfzo 13659   mod cmo 13866  โ„™cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-dvds 16231  df-gcd 16469  df-prm 16642  df-phi 16734
This theorem is referenced by:  modprmn0modprm0  16775
  Copyright terms: Public domain W3C validator