MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0modprm0 Structured version   Visualization version   GIF version

Theorem nnnn0modprm0 16741
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (0..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
Distinct variable groups:   ๐‘—,๐ผ   ๐‘—,๐‘   ๐‘ƒ,๐‘—

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 16613 . . . . . 6 (๐‘ƒ โˆˆ โ„™ โ†’ ๐‘ƒ โˆˆ โ„•)
21adantr 481 . . . . 5 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ๐‘ƒ โˆˆ โ„•)
3 fzo0sn0fzo1 13723 . . . . 5 (๐‘ƒ โˆˆ โ„• โ†’ (0..^๐‘ƒ) = ({0} โˆช (1..^๐‘ƒ)))
42, 3syl 17 . . . 4 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0..^๐‘ƒ) = ({0} โˆช (1..^๐‘ƒ)))
54eleq2d 2819 . . 3 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ (0..^๐‘ƒ) โ†” ๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ))))
6 elun 4148 . . . . 5 (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†” (๐ผ โˆˆ {0} โˆจ ๐ผ โˆˆ (1..^๐‘ƒ)))
7 elsni 4645 . . . . . . 7 (๐ผ โˆˆ {0} โ†’ ๐ผ = 0)
8 lbfzo0 13674 . . . . . . . . . . . 12 (0 โˆˆ (0..^๐‘ƒ) โ†” ๐‘ƒ โˆˆ โ„•)
91, 8sylibr 233 . . . . . . . . . . 11 (๐‘ƒ โˆˆ โ„™ โ†’ 0 โˆˆ (0..^๐‘ƒ))
10 elfzoelz 13634 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ (1..^๐‘ƒ) โ†’ ๐‘ โˆˆ โ„ค)
11 zcn 12565 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
12 mul02 11394 . . . . . . . . . . . . . . . . 17 (๐‘ โˆˆ โ„‚ โ†’ (0 ยท ๐‘) = 0)
1312oveq2d 7427 . . . . . . . . . . . . . . . 16 (๐‘ โˆˆ โ„‚ โ†’ (0 + (0 ยท ๐‘)) = (0 + 0))
14 00id 11391 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1513, 14eqtrdi 2788 . . . . . . . . . . . . . . 15 (๐‘ โˆˆ โ„‚ โ†’ (0 + (0 ยท ๐‘)) = 0)
1610, 11, 153syl 18 . . . . . . . . . . . . . 14 (๐‘ โˆˆ (1..^๐‘ƒ) โ†’ (0 + (0 ยท ๐‘)) = 0)
1716adantl 482 . . . . . . . . . . . . 13 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0 + (0 ยท ๐‘)) = 0)
1817oveq1d 7426 . . . . . . . . . . . 12 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = (0 mod ๐‘ƒ))
19 nnrp 12987 . . . . . . . . . . . . . 14 (๐‘ƒ โˆˆ โ„• โ†’ ๐‘ƒ โˆˆ โ„+)
20 0mod 13869 . . . . . . . . . . . . . 14 (๐‘ƒ โˆˆ โ„+ โ†’ (0 mod ๐‘ƒ) = 0)
211, 19, 203syl 18 . . . . . . . . . . . . 13 (๐‘ƒ โˆˆ โ„™ โ†’ (0 mod ๐‘ƒ) = 0)
2221adantr 481 . . . . . . . . . . . 12 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (0 mod ๐‘ƒ) = 0)
2318, 22eqtrd 2772 . . . . . . . . . . 11 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0)
24 oveq1 7418 . . . . . . . . . . . . . . 15 (๐‘— = 0 โ†’ (๐‘— ยท ๐‘) = (0 ยท ๐‘))
2524oveq2d 7427 . . . . . . . . . . . . . 14 (๐‘— = 0 โ†’ (0 + (๐‘— ยท ๐‘)) = (0 + (0 ยท ๐‘)))
2625oveq1d 7426 . . . . . . . . . . . . 13 (๐‘— = 0 โ†’ ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = ((0 + (0 ยท ๐‘)) mod ๐‘ƒ))
2726eqeq1d 2734 . . . . . . . . . . . 12 (๐‘— = 0 โ†’ (((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0))
2827rspcev 3612 . . . . . . . . . . 11 ((0 โˆˆ (0..^๐‘ƒ) โˆง ((0 + (0 ยท ๐‘)) mod ๐‘ƒ) = 0) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
299, 23, 28syl2an2r 683 . . . . . . . . . 10 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
3029adantl 482 . . . . . . . . 9 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
31 oveq1 7418 . . . . . . . . . . . . 13 (๐ผ = 0 โ†’ (๐ผ + (๐‘— ยท ๐‘)) = (0 + (๐‘— ยท ๐‘)))
3231oveq1d 7426 . . . . . . . . . . . 12 (๐ผ = 0 โ†’ ((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ))
3332eqeq1d 2734 . . . . . . . . . . 11 (๐ผ = 0 โ†’ (((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3433adantr 481 . . . . . . . . . 10 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ (((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” ((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3534rexbidv 3178 . . . . . . . . 9 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ (โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0 โ†” โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((0 + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
3630, 35mpbird 256 . . . . . . . 8 ((๐ผ = 0 โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
3736ex 413 . . . . . . 7 (๐ผ = 0 โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
387, 37syl 17 . . . . . 6 (๐ผ โˆˆ {0} โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
39 simpl 483 . . . . . . . . 9 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ ๐‘ƒ โˆˆ โ„™)
4039adantl 482 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐‘ƒ โˆˆ โ„™)
41 simprr 771 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐‘ โˆˆ (1..^๐‘ƒ))
42 simpl 483 . . . . . . . 8 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ ๐ผ โˆˆ (1..^๐‘ƒ))
43 modprm0 16740 . . . . . . . 8 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
4440, 41, 42, 43syl3anc 1371 . . . . . . 7 ((๐ผ โˆˆ (1..^๐‘ƒ) โˆง (๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ))) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
4544ex 413 . . . . . 6 (๐ผ โˆˆ (1..^๐‘ƒ) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
4638, 45jaoi 855 . . . . 5 ((๐ผ โˆˆ {0} โˆจ ๐ผ โˆˆ (1..^๐‘ƒ)) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
476, 46sylbi 216 . . . 4 (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†’ ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
4847com12 32 . . 3 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ ({0} โˆช (1..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
495, 48sylbid 239 . 2 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ)) โ†’ (๐ผ โˆˆ (0..^๐‘ƒ) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0))
50493impia 1117 1 ((๐‘ƒ โˆˆ โ„™ โˆง ๐‘ โˆˆ (1..^๐‘ƒ) โˆง ๐ผ โˆˆ (0..^๐‘ƒ)) โ†’ โˆƒ๐‘— โˆˆ (0..^๐‘ƒ)((๐ผ + (๐‘— ยท ๐‘)) mod ๐‘ƒ) = 0)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆจ wo 845   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  โˆƒwrex 3070   โˆช cun 3946  {csn 4628  (class class class)co 7411  โ„‚cc 11110  0cc0 11112  1c1 11113   + caddc 11115   ยท cmul 11117  โ„•cn 12214  โ„คcz 12560  โ„+crp 12976  ..^cfzo 13629   mod cmo 13836  โ„™cprime 16610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200  df-gcd 16438  df-prm 16611  df-phi 16701
This theorem is referenced by:  modprmn0modprm0  16742
  Copyright terms: Public domain W3C validator