MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0modprm0 Structured version   Visualization version   GIF version

Theorem nnnn0modprm0 16735
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 16607 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 482 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
3 fzo0sn0fzo1 13717 . . . . 5 (𝑃 ∈ ℕ → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
42, 3syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
54eleq2d 2820 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) ↔ 𝐼 ∈ ({0} ∪ (1..^𝑃))))
6 elun 4147 . . . . 5 (𝐼 ∈ ({0} ∪ (1..^𝑃)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)))
7 elsni 4644 . . . . . . 7 (𝐼 ∈ {0} → 𝐼 = 0)
8 lbfzo0 13668 . . . . . . . . . . . 12 (0 ∈ (0..^𝑃) ↔ 𝑃 ∈ ℕ)
91, 8sylibr 233 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 0 ∈ (0..^𝑃))
10 elfzoelz 13628 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
11 zcn 12559 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
12 mul02 11388 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → (0 · 𝑁) = 0)
1312oveq2d 7420 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = (0 + 0))
14 00id 11385 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1513, 14eqtrdi 2789 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = 0)
1610, 11, 153syl 18 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^𝑃) → (0 + (0 · 𝑁)) = 0)
1716adantl 483 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 + (0 · 𝑁)) = 0)
1817oveq1d 7419 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = (0 mod 𝑃))
19 nnrp 12981 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
20 0mod 13863 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
211, 19, 203syl 18 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
2221adantr 482 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
2318, 22eqtrd 2773 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = 0)
24 oveq1 7411 . . . . . . . . . . . . . . 15 (𝑗 = 0 → (𝑗 · 𝑁) = (0 · 𝑁))
2524oveq2d 7420 . . . . . . . . . . . . . 14 (𝑗 = 0 → (0 + (𝑗 · 𝑁)) = (0 + (0 · 𝑁)))
2625oveq1d 7419 . . . . . . . . . . . . 13 (𝑗 = 0 → ((0 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (0 · 𝑁)) mod 𝑃))
2726eqeq1d 2735 . . . . . . . . . . . 12 (𝑗 = 0 → (((0 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (0 · 𝑁)) mod 𝑃) = 0))
2827rspcev 3612 . . . . . . . . . . 11 ((0 ∈ (0..^𝑃) ∧ ((0 + (0 · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
299, 23, 28syl2an2r 684 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3029adantl 483 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
31 oveq1 7411 . . . . . . . . . . . . 13 (𝐼 = 0 → (𝐼 + (𝑗 · 𝑁)) = (0 + (𝑗 · 𝑁)))
3231oveq1d 7419 . . . . . . . . . . . 12 (𝐼 = 0 → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (𝑗 · 𝑁)) mod 𝑃))
3332eqeq1d 2735 . . . . . . . . . . 11 (𝐼 = 0 → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3433adantr 482 . . . . . . . . . 10 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3534rexbidv 3179 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3630, 35mpbird 257 . . . . . . . 8 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3736ex 414 . . . . . . 7 (𝐼 = 0 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
387, 37syl 17 . . . . . 6 (𝐼 ∈ {0} → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
39 simpl 484 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
4039adantl 483 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑃 ∈ ℙ)
41 simprr 772 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑁 ∈ (1..^𝑃))
42 simpl 484 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝐼 ∈ (1..^𝑃))
43 modprm0 16734 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4440, 41, 42, 43syl3anc 1372 . . . . . . 7 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4544ex 414 . . . . . 6 (𝐼 ∈ (1..^𝑃) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4638, 45jaoi 856 . . . . 5 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
476, 46sylbi 216 . . . 4 (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4847com12 32 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
495, 48sylbid 239 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
50493impia 1118 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  cun 3945  {csn 4627  (class class class)co 7404  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cn 12208  cz 12554  +crp 12970  ..^cfzo 13623   mod cmo 13830  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-phi 16695
This theorem is referenced by:  modprmn0modprm0  16736
  Copyright terms: Public domain W3C validator